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ABSTRACT 
 
 

IMPROVEMENTS OF WARM-SEASON CONVECTIVE WIND FORECASTS AT 

THE KENNEDY SPACE CENTER AND CAPE CANAVERAL AIR FORCE 

STATION 

by 
 

Andrew N. Loconto 
 

Plymouth State University, December, 2006 
 
 

 The purpose of this thesis was to evaluate current convective wind gust 

forecasting tools and develop both an extensive climatology of warm-season 

convective wind gusts and some new convective wind gust forecasting 

techniques for potential operational use at NASA’s Kennedy Space Center and 

Cape Canaveral Air Force Station (KSC/CCAFS).  The primary dataset used was 

an 11-year (1995-2005), May through September series of 5-minute averaged 

peak wind speeds from an extensive instrumentation network of towers on the 

KSC/CCAFS complex.  After rigorous manual and automated quality control 

routines were performed on the dataset, a chronological dataset of “convective 

wind periods”—periods in which a peak wind gust was recorded when a 

thunderstorm(s) was occurring over a length of not more than 6 hours—was 

compiled.  Climatological statistics were then computed for the 11-year warm-

season convective wind periods.   

 After dividing up these convective wind periods into “KSC warning-

criteria”—convective wind periods where peak wind speeds were ≥ 35 knots and 



 xii

“below-criteria” periods, an evaluation of  current forecasting aids using RAOB 

and Doppler radar data for a pool of convective wind periods was performed.  

The RAOB data used in this study came from the most recent local KXMR 

sounding for any convective wind period, while the Doppler radar data utilized in 

this study was from the NCDC’s archive of the Melbourne, FL (KMLB) “Storm 

Structure” datafile from 5 minutes prior to the occurrence of the maximum peak 

wind gust for any convective wind period.  This study found Probability of 

Detection (POD) and False Alarm Rate (FAR) values of roughly 50% for the 

commonly-used binary (yes/no) RAOB-based convective wind forecast aids, 

MDPI and WMSI, for differentiating between warning-criteria and below-criteria 

peak wind gusts.  Root-mean-squared (RMS) errors for RAOB-based peak wind 

gust forecasting tools (WINDEX, T1, T2 and Snyder Method) were found to be 

undesirably high, with RMS errors ranging between 9 to 21 knots.  Using the 

Doppler radar data, much more accurate RMS error values of maximum peak 

wind speeds were reported using a 44-case dataset by using Echo Top/VIL 

(ET/VIL) Wind Gust Potential Equation than was reported by a previous study by 

Sullivan (1999).  However, large RMS errors were found for wind speeds below 

KSC warning criteria.  It was also found that cell-based VIL and maximum 

reflectivity were found to have the best correlation to peak convective wind gust 

speeds. 

 Finally, work was done to develop new convective wind forecasting aids 

using RAOB sounding data and Doppler radar data.  It was found that in the 

mean a potential differentiating factor between KSC warning-criteria gusts and 
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below-criteria wind gusts was the lapse rate of equivalent potential temperature 

(theta-e).  From this result, threshold values of theta-e lapse rate were 

established for several central Florida flow regimes as defined in Lericos et al. 

(2000). A multiple linear regression equation was also developed using cell-

based VIL, maximum reflectivity and height of the maximum reflectivity as 

predictors.  Using a 22-case independent dataset, slightly better accuracy was 

found using this new equation than the ET/VIL with much more accurate values 

reported for below-criteria winds.  It was shown that for cell cores whose 

maximum reflectivities reside above freezing level and that are accompanied by 

high values of cell-based VIL, a severe convective wind gust (≥ 50 knots) was 

found to have occurred.  The conditions described for severe convective winds 

from this study (high VIL values accompanied by cell cores above freezing level) 

would seem to suggest that hail was present just prior to downburst occurrence.  

This is in general agreement with previous modeling studies of wet microbursts in 

stable lapse rate regimes.    
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CHAPTER 1 
 

 
1.  Introduction and background 
 
 Convective winds and the associated low-level wind shears these events 

produce are well-known hazards to aviation and space launch activities.  At the 

Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station 

(CCAFS), accurate and timely prediction of gusty winds from deep, moist 

convection is critically important.  To that end, the forecasters at the 45th Weather 

Squadron (45 WS) at KSC/CCAFS issue convective wind advisories for the 

entire KSC/CCAFS complex for thunderstorms that produce convective winds ≥ 

35 knots.  A more detailed summary of convective wind warning criteria for 

KSC/CCAFS, among other warning authorities, is shown in Table 1. 

 Many research efforts have focused on understanding the processes that 

generate microbursts.  Fujita (1981) defined a microburst as a strong downdraft 

of air that induces damaging outflow winds with a horizontal extent ranging 

between 0.4 km and 4 km.  Wilson et al. (1984) redefined a microburst for use in 

radar meteorology as the presence of a near-surface radial divergence signature 

with a velocity difference across the divergence core meeting or exceeding 10 

ms-1 across a horizontal distance of no more than 4 km. Wakimoto (1985) 

modified the definition of Fujita (1981) and defined a “wet microburst” as one 

observed in humid environments that are associated with intense convective 

precipitation, and a “dry microburst” as one observed in low relative 

humidity environments that are associated with little or no precipitation reaching               
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Table 1.  Warning criteria table. 
               Source: Mr. William Roeder, 45 WS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

the surface.  It is the wet microburst that is most commonly observed across the 

KSC complex in the warm season, owing to the presence of the warm, humid 

airmass that is characteristic of Florida warm seasons.   

 Several theoretical and modeling studies have attempted to conceptualize 

the physics that drives wet microbursts.  These studies suggest that evaporative 

cooling of liquid water and precipitation drag are two physical mechanisms that 

drive microbursts to the surface (Srivastava 1985, 1987; Proctor 1989).  There 

also appears to be a microphysical dependence on wet microburst strength.  A 

few of these research efforts have concluded that meltwater from hailstones 

evaporating into a sufficiently dry enough layer promotes significant evaporative 

cooling for wet microbursts (Srivastava 1987; Proctor 1989).  These 

microphysical findings are supported by observational evidence in Atlas et al. 

LOCATION CRITERIA DESIRED 
LEAD-TIME 

KSC ≥ 35 Kt 30 min 

(surface-300 Ft) ≥ 50 Kt 60 min 

 ≥ 60 Kt 60 min 

CCAFS ≥ 35 Kt 30 min 
(surface-200 Ft) ≥ 50 Kt 60 min 

Patrick AFB > 25 Kt 30 min 

(surface) ≥ 35 Kt 30 min 

 ≥ 50 Kt 60 min 

 Gust Spread ≥ 20 Kt Observed 

 LLWS < 2,000 Ft Observed 

MELBOURNE ≥ 50 Kt  60 min 

(surface)   
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(2004) for an Amazonian wet microburst.   In addition, modeling studies by 

Proctor (1989) found that the presence of a stable layer near ground level would 

weaken the strength of the wind gusts from microbursts.  Using proximity 

radiosonde soundings from the 1986 Microburst and Severe Thunderstorm 

(MIST) project, Atkins and Wakimoto (1991) have demonstrated that a change in 

equivalent potential temperature (θe) between the surface and middle-levels of 

the atmosphere exceeding 20 K was found to be present on wet-microburst days, 

compared to the same vertical θe difference of 13 K or less on null days. 

 Following Atkins and Wakimoto (1991), Wheeler (1996) developed the 

Microburst Day Potential Index (MDPI) for operational microburst forecasting at 

the Kennedy Space Center.  This index, to be defined mathematically later, is 

based upon difference between the maximum θe in the low-levels of the 

atmosphere and the minimum θe in the mid-levels of the atmosphere.  Following 

Proctor (1989), McCann (1994) developed the Wind Index (WINDEX), also to be 

defined mathematically later. WINDEX is an empirical formula that computes a 

maximum wind gust for a microburst that originates at the melting level. Geerts 

(2001) modified the WINDEX equation using RAOB soundings for Australian 

microbursts and defined GUSTEX, an empirical relationship that includes the 500 

hPa wind speed in addition to the gust speed calculated by WINDEX.    

 Both the MDPI and WINDEX may be updated using current surface and 

RAOB observations, and have also recently been overlaid onto visible or infrared 

satellite imagery (Ellrod et al. 2000; Pryor and Ellrod 2003) as computed from 

Geostationary Operational Environmental Satellite (GOES) Sounder-derived 
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soundings.  Ellrod et al. (2000) found that the GOES WINDEX does a poor job at 

estimating the wind speed at night due to the more stable surface to melting-level 

lapse rate at night.  More recently, Pryor and Ellrod (2004) developed the Wet 

Microburst Severity Index (WMSI), which computes the product of Convective 

Available Potential Energy (CAPE) and the difference in θe from the surface to 

the mid-levels divided by 1000.  Like the MDPI and WINDEX before it, WMSI has 

been overlaid onto visible or IR imagery. 

 The Air Force (Miller 1975) have developed a number of indices for 

predicting convective winds. Among them are the T1, T2, and Snyder methods 

for anticipating convective gusts. However these older indices were primarily 

based on convection in the Midwestern U.S. and have not been really evaluated 

for use in areas such as the Florida Space Coast.    

 WSR-88D Doppler radar can serve as a nowcasting tool for detecting the 

onset of convectively-generated wind episodes.  Roberts and Wilson (1989) have 

found that descending reflectivity cores, V-shaped reflectivity notches, storm 

rotation or large values of radial wind convergence within the mid-levels of the 

storm are characteristic radar signatures of microbursts.  These features were 

observed 2-6 minutes prior to microburst occurrence.  This evidence is supported 

by preliminary research conducted by Falk et al. (1998), which defined thresholds 

for convective wind warnings at the NWS in Shreveport, LA in terms of 

magnitude and height of reflectivity cores and also in terms of storm-relative 

radial convergence for single-cell pulse-type thunderstorms.  Sullivan (1999) 

evaluated three wind gust prediction equations that use Doppler-radar measured 
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variables using KSC mesonetwork data from 15 microburst cases.  Of these, he 

found that the Storm Top/Vertically Integrated Liquid (ST/VIL) equation best 

predicted KSC microburst events to within +/- 5 knots.  

 These operational tools have been met with varying degrees of success 

for convective wind forecasts at the Kennedy Space Center and Cape Canaveral 

Air Force Station.  There is a need to evaluate existing tools and to develop 

additional forecast indicators of convective wind outbreaks.  This need is further 

stressed by the various space launch functions that Kennedy Space Center 

performs for the U.S. Space Program, which necessarily mandate accurate and 

timely prediction of these events.   

The purpose of this Master’s Thesis is to objectively evaluate most of the 

current techniques to predict strong convective winds and to design/evaluate 

additional warm-season convective wind forecasting tools for use at the 

KSC/CCAFS complex.  An updated eleven-year convective wind climatology for 

the KSC/CCAFS complex will first be presented in order to identify individual 

convective events, how frequently these events occur and what favors their 

generation, especially from a thermodynamic perspective.  Existing predictive 

tools for convective winds will then be evaluated for a variety of identified 

convective events, using both rawinsonde-based techniques as well as Doppler 

radar techniques.  Then new or modified forecasting aids will be examined to 

predict both the likelihood of these convective wind episodes as well as the 

maximum expected wind gust with the goal of improving forecast skill of 

convective wind forecasting at KSC/CCAFS.  
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CHAPTER 2 
  
 
2.  Data and methodology 

 
a. Climatology 
  
 This section will highlight the data and methodology used in the 

construction of the eleven-year warm-season convective wind climatology at 

KSC / CCAFS.  Much of the following discussion is documented in Koermer and 

Loconto (2005) for the 1995-2003 convective wind years and Cummings et al. 

(2007) for the 2004-2005 convective wind years.  Sections 1 through 4 below are 

taken from Koermer and Loconto (2005).  This updated climatology will serve as 

a dataset that will be used for the development of rawinsonde and WSR-88D 

forecasting tools.  For this reason, it is worthwhile to discuss how the convective 

wind climatology was designed as a background before discussing the 

forecasting tools. 

   
1)  CLIMATOLOGICAL DATA 

 
  The primary wind data used for the climatological update were the 5-

minute peak wind data from sensors on 44 towers on or around the CCAFS/KSC 

complex for the months of May through September for 1995 through 2003. The 

NASA Applied Meteorological Unit (AMU) had already completed some 

automated and manual quality control (QC) on these data. Case and Bauman 

(2004) give a very complete description of the tower mesonet. They also discuss 

the automated data QC methodologies that they adopted from Lambert (2002) 
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and their additional manual QC of tower temperature data to build what is 

referred to as the “AMU QC data”. This dataset was the starting point for the 

development of our updated climatology. 

 
2)  INITIAL DATA PROCESSING 

 
 The AMU QC data were provided in individual monthly files for each tower 

sensor suite. Since most of the sites had sensors at more than one elevation and 

several towers have dual sensors on opposite sides of the tower, there were a 

total of 151 data files per month containing the 9 years worth of data for the 

individual sensor suite. Files were identified by tower number, month, and sensor 

elevation. Dual sensors on different sides of a tower are usually given different 

tower identifier numbers. Figure 1 depicts the location of various towers on or 

around the CCAFS/KSC area. 

 Wind tower data were in plain ASCII tabular, semi-colon delimited format 

and each line contained possible entries for identification number, year, month, 

day, hour, minute, elevation, temperature,  dewpoint, wind speed, wind direction, 

peak wind speed, peak wind direction, directional variability, and relative 

humidity.  Missing data or data replaced in the AMU QC process had numerical 

entries like -999x, where x was 9 for missing data and other numerical digits 

when substituted after various QC processes. 

 In order to get a better idea on the frequency of occurrence of high wind 

events (≥ 35 knots) that would have required 45 WS warnings, tower data were 

read in and a single file was built for each month and year containing the 

observations from all locations where the peak wind exceeded 24 knots. Files 
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        Figure 1. CCAFS/KSC tower network.  White shading indicates  
                       tower ID numbers that were excluded in the study.   

 
 

were then imported into an EXCEL spreadsheet and observations were then 

sorted in chronological order. This allowed us to see “outbreaks” and not just 

single events. After reviewing the data in these files, a problem was discovered 

at several sites. The problem was that some locations had continuously steady 5-

minute values of peak wind for hours or (in one case) for even days. Besides a 

constant peak wind value, the directional variability was listed as 0 or 1 degree—

highly suspect for even weak winds. There was also no corresponding 

meteorological support to justify these extended events. To remedy this, a 

program was developed to look for any wind variability entries of 0 or 1 degrees 

with peak winds at or above 5 knots and replace the peak wind gust, peak wind 

direction and directional variability values with a “-9997” flag.  The program was 
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then run on the initial quality controlled data and the corresponding chronological 

EXCEL files were rebuilt. 

 
3)  INITIAL MANUAL ASSESSMENT 

 
 Using each monthly file as a guide, a manual evaluation was used to try to 

assess if a strong wind report or a series of strong wind reports could be 

associated with convection or some other alternative feature like a strong 

pressure gradient (PG) from a tropical system or a plain synoptic gradient. The 

EXCEL spreadsheets were color-coded accordingly and used green cell shading 

or probable convective events, no shading for probable strong PG driven events, 

and red shading for observations that defied any meteorological explanation.  In 

performing these assessments, we used radar, satellite imagery, lightning data, 

surface observations and reanalysis data, and surface observations from the 

NASA Shuttle Landing Facility (ICAO: KTTS).  

 Radar data included NCDC archived NEXRAD radar maps and archived 

Plymouth State University (PSU) archived MDR and RCM maps. The NCDC 

maps were quite limited during 1995 through early 1996, but were the only radar 

data readily available. NCDC radar maps were available at the following site: 

 http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwNexrad~Images2 

 for only about one hour (usually ~23 Z)  per day from 1995 through early 1997 

and then generally became available on an hourly basis. However, the resolution 

of the US composite maps was quite poor when looking to distinguish the 

location and intensity of convective mesoscale features 
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 The PSU radar data could be custom mapped for the region of interest 

and were retrieved from http://vortex.plymouth.edu/u-make.html. The PSU hourly 

MDR data were available for 1999 and beyond and provided a bit more detail 

about intensity, but spatial resolution is very broad-brushed. The PSU twice-

hourly RCM data became available for 1992-1993 and provided very good 10-km 

echo resolution radar imagery. Figures 2a-c, all for the same approximate 

date/time, show the limitations or benefits with using these various forms of radar 

data. 

 For cases where radar data for a particular date/time were missing, hourly 

infrared satellite images from the PSU archived web site listed above were 

accessed. Satellite data are archived as broad view images and hence have 

resolution limitations, similar to some of the radar maps.  Figure 3 provides 

example of this imagery for the same date/time as used in Figure 1. This 

example does clearly show the convective cloud tops in the area of interest. For 

lightning data, we used the AMU Cloud-to-Ground Lightning Surveillance System 

(CGLSS) Climatology as another tool to identify convective and non-convective 

events. This CGLSS climatology provided a daily summary of strikes and hence 

did not provide good time resolution. 

 The 00 and/or 12 UTC regional height-contoured 1000mb NCEP/NCAR 

reanalysis maps or hourly pressure-contoured surface maps, and both were from 

the PSU archive site to subjectively determine pressure gradient existence and 

relative strength. The NCEP/NCAR data were used for 1995 through July of 1997 

and then the hourly observational data was used from August 1998 through the 
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end of the study period. The higher time and spatial resolution of the different 

data sets was sometimes significant. Figure 4 shows the difference in trying to 

assess the PG strength for 17 UTC on May 31, 2002.  The 12 UTC data shows a 

stronger PG situation than the actual 17 UTC surface data that was taken very 

close to the time of convection. 

 The KTTS surface observations for 1995-1998 were obtained from the Air 

Force Combat Climatology Center (AFCCC) and for 1999-2003 from the PSU 

archived data site. These detailed observations, taken by very skilled observers, 

tended to fully corroborate convective assessments from other sources and 

perhaps provided the greatest details for determining the onset and termination 

of convection in the area of interest. 

 After reviewing the various kinds of data, we annotated our strong wind 

cases with comments on the strength and amount of convection (primarily from 

radar reports), the strength and direction (if any) of the PG situation, and relevant 

convective data and gusts (if any) from the KTTS observations. Table 2 shows a 

spreadsheet excerpt showing two events, where the first has winds attributed 

primarily to the pressure gradient and the last due to convection. Table 3 shows 

similar entries for a case identified as “bad” that were missed by QC programs. 
 
 

4)  AUTOMATED PROCESSING OF DATA 
 

 While manual analysis of strong peak wind reports was possible, doing the 

same for over 5.5 million total peak wind reports was not practical. As a result a 

more automated approach had to be taken to analyze data as being convective 
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or not. In order to come up with such a scheme, it was first necessary to come up 

with a convective event database. To accomplish this, convective report data. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.  (a) NCDC NEXRAD , (b) PSU MDR, and (c) PSU RCM radar summary 
maps for between 1700-1800 UTC on May 31, 2002. 
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Figure 3. PSU archived infrared satellite imagery for 1715 UTC on May 31, 2002. 
 
 
 

         
                            (a)                                                                 (b) 
 
Figures 4. (a) PSU NCEP/NCAR 1000 hPa height analysis fo1112 UTC on May 
31, 2002 and (b) PSU surface analysis for 17 UTC on May 31, 2002. 
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Table 2. Excerpt from spreadsheet containing peak wind speed (PWS) wind 
reports ≥ 35 knots for May 2002. The “Original File” column is highlighted in 
green for those outbreaks attributed to convection and not highlighted for PG-
driven events. 
  
.   Original File    Year   Mo  Day  Hr   Min   Temp  TD     WS   WD PWS PWD DV   RH     Remarks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3. Excerpt from June 2002 spreadsheet identifying probable bad reports at 
towers 511, 512, and 513 on different days. Red is used to highlight bad report 
entries and peak wind reports ≥ 50 knots. 
 
   Original File   Year    Mo  Day  Hr    Min    Temp       TD      WS      WD  PWS PWD  DV      RH     Remarks 
 
 
 
 
 
 
 
 
 
 
from KTTS surface observations were used to build monthly tables for each year. 

The tables list each day versus each hour and entries were manually extracted 

based on whether thunder (T) or showers from CBs or nearby CBs were 

reported. Peak winds or gusts, if reported from the KTTS METAR, were also 

noted in this database. We did not count distant CB or distant lightning sightings 

3132_05_492. 2002 5 22 15 50 70.9 59.5 29 7 36 5 7 67 No conv, strng NE PG, mdt CU, RW- & G28
0398_05_060. 2002 5 22 16 0 73.4 62.1 20 1 35 360 7 68    "          "          "
0393_05_060. 2002 5 22 16 20 73.8 63.3 21 5 35 6 9 70    "          "          "
0393_05_060. 2002 5 22 16 30 73.8 64.2 21 1 36 1 9 72    "          "          "
0393_05_060. 2002 5 22 16 35 73.8 63.9 23 2 37 359 9 71    "          "          "
0398_05_060. 2002 5 22 16 35 73.6 63.3 23 358 36 353 7 70    "          "          "
3132_05_295. 2002 5 22 16 55 -9999 -9999 26 4 35 6 13 -9999    "          "          "
0003_05_054. 2002 5 22 22 10 66.7 -9999 27 9 35 12 9 -9999    "          "          "
0398_05_060. 2002 5 23 0 30 73.6 66.4 27 38 35 40 9 78    "          "          "
3132_05_492. 2002 5 23 0 35 71.4 62.4 28 52 35 51 6 73    "          "          "
0020_05_090. 2002 5 31 16 55 -9999 -9999 23 125 36 140 21 -9999 Strng conv, vry wk vrbl E PG, TRW & G26 
0020_05_145. 2002 5 31 16 55 -9999 -9999 26 130 38 145 21 -9999    "          "          "
0020_05_204. 2002 5 31 16 55 75.6 -9999 26 132 37 139 21 -9999    "          "          "
0021_05_090. 2002 5 31 16 55 -9999 -9999 26 126 35 143 22 -9999    "          "          "
0021_05_145. 2002 5 31 16 55 -9999 -9999 28 128 36 140 22 -9999    "          "          "
0021_05_204. 2002 5 31 16 55 75.2 69.3 29 132 36 146 22 82    "          "          "
0003_05_054. 2002 5 31 17 0 74.1 -9999 27 146 36 143 22 -9999    "          "          "
0020_05_054. 2002 5 31 17 0 74.5 70.7 21 136 35 143 23 88    "          "          "
0020_05_090. 2002 5 31 17 0 -9999 -9999 25 137 36 143 22 -9999    "          "          "
0020_05_145. 2002 5 31 17 0 -9999 -9999 27 140 36 141 22 -9999    "          "          "
0020_05_204. 2002 5 31 17 0 73.2 -9999 28 139 38 140 23 -9999    "          "          "
0021_05_090. 2002 5 31 17 0 -9999 -9999 26 141 36 138 24 -9999    "          "          "
0021_05_145. 2002 5 31 17 0 -9999 -9999 28 140 36 140 24 -9999    "          "          "
0021_05_204. 2002 5 31 17 0 73.2 69.1 29 142 37 143 23 87    "          "          "

0511_06_030 2002 6 4 13 15 -9999 -9999 53 180 74 180 28 -9999 No conv, vry wk SE PG, no spprt at K
0513_06_030 2002 6 4 13 15 -9999 -9999 43 180 74 180 33 -9999    "          "          "
0511_06_030 2002 6 14 13 35 -9999 -9999 42 184 74 180 23 -9999 No conv, wk W PG, no spprt at KTTS
0512_06_030 2002 6 14 13 35 -9999 -9999 -9995 -9995 74 180 20 -9999    "          "          "
0513_06_030 2002 6 14 13 35 -9999 -9999 42 183 74 180 23 -9999    "          "          "
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by the observer as evidence of convection within the area. We annotated the 

entry as “0” if there was no convection at or near KTTS and we went back and 

listed “X” for those times that were under the influence of Tropical systems. 

 Here is a list of the tropical systems that occurred during the period of this 

study and the dates that they probably affected wind speeds in the area: 

 
• 1995 – Hurricane Allison (5 Jun), Hurricane Erin (1-3 Aug)., and 

T.S. Jerry (24-25 Aug) 
• 1996 – None, although T.S. Arthur (19 Jun) may have had a slight 

impact 
• 1997 – None 
• 1998 – Hurricane Earl (2 Sep) 
• 1999 – None 
• 2000 – T.S. Gordon (17-18 Sep) 
• 2001 – T.S. Gabrielle (14-15 Sep) 
• 2002 – T.D./T.S. Eduoard (4 Sep) with a feeder band 
• 2003 – None 

 
 
 Based on the table entries a simple decision matrix was created with “1” 

representing existing or nearby convection for a particular hour and “0” 

representing either tropical system influence or no convection hours. At this 

point, the matrix does not distinguish between convection and PG except for the 

tropical system events. 

 All data that had undergone automated QC, but was still manually flagged 

as bad, was manually modified with a “-9990” bad data flag in the respective data 

files.  Files for sites about 300 feet were eliminated from additional automated 

processing as well as files for sites with fewer than 75% “valid” peak wind reports 

for the entire period of record.  Statistics were then gathered on all valid peak 

wind events for categories of ≤ 20 knots and for 5 knot range categories above 
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20 knots. Similar statistics were generated for those hours that were identified at 

having existing or nearby convection. 

 
5)  EXPANSION OF PERIOD OF RECORD TO INCLUDE 2004-2005 AND OTHER 

MODIFICATIONS 
 

 Cummings et al. (2007) set out to add to the existing nine-year convective 

wind climatology developed in Koermer and Loconto (2005) by using the 2004 

and 2005 convective wind years.  Instead of from the AMU, the raw 5-minute 

peak wind gust data were acquired from Computer Science Raytheon (CSR).  

These additional two years of data were first processed using the same manual 

and automated QC routines outlined above and in Koermer and Loconto (2005).  

After these manual and automated QC routines were performed, an additional 

program was created that generated statistics for each convective wind day in 

the 11-year climatology with output that included the number of observations and 

time periods that various peak wind speeds (in 5-kt incremented bins) had 

occurred, as well as the value and time that the maximum peak wind gust had 

occurred on that day.  A breakout such as that described above for each day in 

the 11 years was found to be extremely useful, as it facilitated the selection of 

warning-criteria days and below warning criteria days in the development of new 

convective wind forecasting tools.       

         
6)  GENERAL CLIMATOLOGICAL SUMMARIES 
 

  After the manual and automated QC was complete, the peak wind data 

was organized into Microsoft Excel.  Yearly, monthly, and hourly statistics of 

convective wind observations ≥ 35 knots were then created.  The same statistics 
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were then generated for the “convective wind outbreaks.”  The definition of a 

“convective wind outbreak” that will be adopted in this thesis is defined by 

Koermer and Loconto (2005) as the following:  

 
Convective wind outbreaks are defined as “peak wind report(s) of ≥ 35 knots, 
determined to be convectively driven, for a single tower or towers that  
end with a break in convection of 6 hours or more.” 

       
 
 To gain a sense of the frequency of these KSC warning-criteria wind 

speed occurrences, monthly frequency diagrams of all wind speeds (i.e. 

convectively-generated and not convectively-generated) < 20 knots and 

convective wind speeds < 20 knots were generated.  Convective wind speeds ≥ 

35 knots are then separated into wind speed categories of 5 knot increments.  

Monthly and hourly distributions of these categorical wind speeds were then 

developed.  To see if there is a height dependency on these convective wind 

speeds, the categorical convective wind speeds are then sorted by the tower 

elevation that the wind speed was measured.  Because some towers report wind 

data at the same elevation and not others, the number of convective wind speeds 

for each wind speed category was normalized by dividing by the number of 

towers that report at that elevation.  This removes any bias that an irregular 

number of tower measurements would have at each elevation.   

 
7) THERMODYNAMIC CLIMATOLOGY SUMMARIES 

 
 Once the eleven-year climatology was created, a listing of all convective 

wind outbreaks that took place during the eleven-year climatology was 

constructed.  A pool of 33 convective wind episodes was taken from this listing.  
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A second pool of 33 null events (i.e. those events that produced thunderstorms 

but not cases in which warning-criteria convective winds were reported by the 

KSC mesonetwork) was also compiled.  The most recent Cape Canaveral 

radiosonde observation (KXMR) was taken for each of the 66 events.  In almost 

all cases, the most recent XMR radiosonde that was available for analysis was 

the 15Z radiosonde data.  This information came in the form of a textfile acquired 

from Plymouth State University’s KXMR Sounding Generator Archive page 

(http://vortex.plymouth.edu/uacalplt-xmr-u.html).  These radiosonde data were 

imported into Microsoft Excel spreadsheets.   

 From these spreadsheets, composite graphs showing the distribution of 

equivalent potential temperature (θe, in Kelvin) as a function of height (in meters) 

were constructed for the convective wind days and null days.  To better identify 

what the theta-e profile would look like on a typical warning criteria versus below 

warning criteria wind day, a mean profile of θe was developed for warning criteria 

wind days and below warning criteria days by averaging the θe in 500-m layer 

increments for warning-level events and below-warning criteria events.  A two-

sample t-test was performed to test the statistical significance of these two 

profiles. 

 
b. Radiosonde forecasting techniques data and methodology 
 
 This section will discuss the data and methodology that was used in 

developing and/or evaluating forecasting tools for the KSC/CCAFS using KXMR 

radiosonde data.  The radiosonde data that was used in this section is the same 

as that used in building the thermodynamic climatology (see Section 1(g) for 
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more detail).  As will also be the case for the WSR-88D forecasting tools, the 

RAOB convective wind forecasting tools have an inherent assumption—that 

there is a sufficiently large enough forecast confidence that convection is likely.  

These forecast tools have little or no forecasting significance if that assumption is 

not met.       

 
1)  MDPI AND WMSI DEFINITIONS 

 
 The Microburst Day Potential Index (MDPI) (Wheeler and Roeder 1996) is 

a KSC wet microburst forecasting tool, and is defined by Eq. (1) below: 

 
 
                                   

30
minmax eeMDPI θθ −=                                           (1) 

 
 
 

where θemax is the maximum θe  (in Kelvin) in the 1000-850 hPa layer and θemin is 

the minimum θe (in Kelvin) in the 660-500 hPa layer.  The denominator of 30 is a 

local tuning factor.  A value of MDPI > 1 suggests a threat of a wet microburst if 

convection is likely to occur.  Another wet microburst forecasting tool is the Wet 

Microburst Severity Index (WMSI) (Pryor 2005), defined by Eq. (2) below: 

 
                 

1000
eCAPEWMSI θ∆⋅=                                                (2) 

 
 

Where CAPE is the Convective Available Potential Energy (in J kg-1) and ∆θe  is 

the same as previously defined.  CAPE is used in the WMSI equation to filter out 

weaker thunderstorms and assumes that storms that are produced in high-CAPE 

environments are also proficient enough rain producers to promote wet 
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microbursts.  Pryor (2005) found that values ≥ 50 are characteristic of wet 

microburst winds of 35 knots or larger.  While the MDPI is currently being used 

operationally by 45 WS forecasters, the WMSI is a more modern wet microburst 

forecasting tool and has not been tested for the KSC/CCAFS complex.   

  
2)  FORECASTING TOOL VERIFICATION 

   
 A common method for assessing forecast skill of binary forecasting aids 

(i.e. to forecast yes or forecast no) such as MDPI or WMSI is the 2 X 2 

contingency table (Wilks 2005).  Such a table is provided in Table 4.  For 

instance, the number of times an event did occur and was also predicted to occur 

is given by letter “a” in Table 4.  The use of the letters “a,b,c,d” in Table 4 can be 

used to calculate forecasting skill attributes such as the Probablility of Detection 

(POD), False Alarm Ratio (FAR), Critical Success Index (CSI),  and Heidke’s 

Skill Score (HSS) (Wilks 2005).  These relationships are given by Eqs. (3)-(6) 

below in terms of “a,b,c,d”: 

 
 
      Table 4.  2x2 contingency table. 
 

    Observed 
   Yes No 
Predicted Yes a b 
  No c d 

 
 
 
 

                             POD
ca
a =
+

                                      (3) 
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FAR

ba
b =
+                                              (4) 

 
 
 

                                                 
CSI

cba
a =

++                                             (5) 

 
 

                                    ( )
( )( ) ( )( ) HSS

dbbadcca
bcad =

+++++
−⋅2                             (6) 

 
 
 

The POD (Eq. (3)) simply describes the probability of successful yes forecasts 

(i.e. when a forecasted event is observed to occur) for any index.  The FAR 

describes how likely an index will issue a “false alarm.”  Put another way, the 

FAR defines the probability of yes forecasts that are found to not occur.  Unlike 

POD, FAR has an inherent negative orientation.  That is, lower values of FAR are 

considered desirable with higher FAR values deemed undesirable.  Thus an ideal 

forecasting index is one with a high POD and low FAR.  The CSI, also known as 

the Threat Score (TS), is a ratio that describes the number of correct yes 

forecasts to the number of times an event was forecast and/or observed. Values 

of CSI range between 0 and 1, with a perfect CSI score being 1.  The HSS, 

shown in simplified form by Eq. (6), is a forecast skill statistic that assesses skill 

with respect to “reference forecast accuracy.”  The reference forecasts that HSS 

uses are forecasts that are made by pure chance.  HSS values can range 

between -1 and 1.  Forecasts that are found to be better than the reference 
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forecasts receive positive (but less than 1) HSS scores.  Forecasts found to be 

worse than the reference forecasts receive negative (but not less than -1) HSS 

scores.  Forecasts deemed to be exactly as skillful as the reference forecasts 

receive an HSS score of zero.   

 Each of these forecast skill scores will be calculated for both MDPI and 

WMSI for several breakouts.  A general forecast skill evaluation will be used to 

assess general skill characteristics of MDPI and WMSI.  Two other breakouts will 

be included.  To determine if either index performed better or worse in any given 

month, a monthly forecast skill evaluation will be conducted.  Finally, a forecast 

skill evaluation will be performed using the definitions of various flow regimes as 

described in Lericos et al. (2000) and were used in a recently developed Florida 

lightning climatology that is being used operationally by the National Weather 

Service Melbourne, FL and the 45 WS.  These flow regimes are listed in Table 5.    

 

3)  EVALUATION OF OTHER RAOB CONVECTIVE WIND GUST FORECASTING TOOLS 
 
 Because the convective wind forecasting problem includes both the 

likelihood of convective winds and the predicted peak wind gust associated with 

these events, an error evaluation of four convective wind gust forecasting tools 

was also performed.  For the purposes of the error evaluation, the maximum 

surface peak wind speed (in knots) was compared to the predicted gust for each 

RAOB wind gust prediction technique. 
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Three convective wind gust forecasting tools were evaluated.  The first gust 

prediction method, devised by McCann (1996), was the Wind Index (WINDEX).  

The WINDEX is represented mathematically by the following: 

 
           ( )mlqm QQRHWINDEX ⋅−+−Γ⋅⋅= 2305 2                           (7) 

 

Where Hm is the height of the melting level (in km), Ql is the mean mixing ratio (in 

g kg-1) from the surface to 1 km, Rq is Ql divided by 12, Qm is the mixing ratio (in 

g kg-1) at the freezing level, and Γ is the surface to freezing level lapse rate (in°C 

km-1).  The last three indices are convective wind gust forecasting tools 

          
Table 5.  Definitions of flow regimes.  Adapted from 

                                   Cummings et al. (2007) 
 

 

 

 

 

 

 

 

developed by the Air Force (Miller 1975) and are referred to as the Synder 

Method, and the T1 and T2 methods.  Once a wind gust is derived from the T1 

method, an environmental wind speed correction (the mean wind speed from the 

surface to 5000 ft) is added to obtain the true gust.  After T2 is calculated, three 

values are provided: a minimum expected gust speed, an average gust speed, 

FLOW 
REGIME 

SUBTROPICAL RIDGE POSITION 

SW-1 Subtropical ridge south of Miami 

SW-2 Subtropical ridge between Miami and Tampa 

SE-1 Subtropical ridge between Tampa and 
Jacksonville 

SE-2 Subtropical ridge north of Jacksonville 

NW Subtropical far to south and extending far in 
Gulf of Mexico and stronger than normal 

NE Subtropical far to north and extending into 
SE US and much stronger than normal 

Other Subtropical ridge position not defined 
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and a maximum gust speed.  Instead of using a range, the maximum gust speed 

is used for the T2 gust speed.   

 Two commonly used statistical measures of forecast error are the root-

mean-square error (RMSE) and the mean absolute error (MAE).  These 

equations are: 

                  ( )∑
=

−⋅=
n

k
kk oy

n
RMSE

1

21                                     (8) 

 

                    kk

n

k
oy

n
MAE −⋅= ∑

=1

1                              (9) 

 
In Eqs (8)-(9), yk is the kth predicted value and ok is the kth observed value in 

some arbitrary dataset of size n, RMSE is the root-mean-square error (in kt) and 

MAE is the mean-absolute error (in kt).  The advantage of using the MAE is that 

because the error term is squared in the RMSE equation, the RMSE can be quite 

large in situations when the error for only a few cases is large.  Sullivan (1999), in 

an evaluation of predictive gust equations using Doppler radar information, 

defined a “hit” as those cases in which the predictive method correctly guessed 

the convective wind gust to within +/- 5 knots of accuracy.  In addition to the 

RMSE and MAE, the number of “hits” will also be compiled for WINDEX, T1 and 

T2 RAOB gust forecast predictions.  A large number of “hits” implies reasonably 

good forecast accuracy. 

 
4)  DEVELOPMENT OF THRESHOLD THETA-E LAPSE RATES FOR CONVECTIVE WIND 

WARNING DECISIONS 
  

 Once a theta-e lapse rate equation was devised, a procedure that is 

referred to as Relative Operating Characteristics (ROC) was applied to the theta-
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e lapse rate values that are computed.  The ROC procedure (Wilks (2005)) uses 

a graph of the Probability of Detection on the y-axis and the False Alarm Rate on 

the x-axis.  Threshold values of theta-e lapse rate may be found by starting from 

the lowest theta-e lapse rate encountered in the dataset and then incrementing 

these by some arbitrary value (in this case, .5 K km-1 will be used as the 

increment).   Plotting and connecting the (FAR, POD) ordered pairs for each 

theta-e lapse rate value will result in a curve.  From this curve, an “optimal value” 

(i.e. that value that best maximizes POD and minimizes FAR) can be selected as 

an appropriate threshold for warning decisions.  ROC diagrams will be 

constructed for each of the flow regimes defined in Lericos et al. (2000).          

 
c. WSR-88D Doppler radar techniques data and methodology 
 
 This section will discuss the data and methodology associated with 

convective wind forecasting techniques associated with WSR-88D Doppler radar 

data.  Many of the assumptions mentioned in Section 2 would also apply here. 

 
1)  DOPPLER RADAR DATA 

 
 Each of the Doppler radar-measured quantities was obtained from a file 

referred to as “Storm Structure” from the National Climatic Data Center (NCDC) 

KMLB (Melbourne, FL) Doppler radar archives.  This file is an alphanumeric, 

tabular product that is generated by the Storm Cell Centroid Sub-Function 

(SCCS), one of the four major sub-functions in the Storm Cell Investigation and 

Tracking (SCIT) algorithm.  This product relays information on the following storm 

cell attributes, updated at each successive volume scan: 
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• Cell-based Vertically Integrated Liquid (VIL)  (kg m-2) 
• Azimuth and Range of storm cell from RDA (in degrees) 
• Cell Base and Echo Top (in kilofeet) 
• Maximum Reflectivity (in dBZ) 
• Height of the Maximum Reflectivity (in kilofeet) 

 
 

Each of these parameters are computed for each storm cell, which are given 

an alphanumeric “name” or “ID” (such as “J8”, for example), with each storm ID 

being ranked according to cell-based VIL.  One final parameter that was 

computed from the Echo Top and the Cell Based VIL is the VIL Density.  This is 

defined mathematically in Eq. (10) as: 

 

                     
ET
VILVILDensity = ,                          (10) 

     
 
 

where VIL is the cell-based VIL (in kg m-2), ET is the Echo Top (in kilofeet), and 

VIL Density is the VIL Density (in kg m-3).          . 

  The approximate time of the convective wind gust was documented for 

each event.  The latest Storm Structure datafile corresponding to the 

approximate time of the convective gust was then taken for each case day from 

the NCDC Melbourne, FL (KMLB) WSR-88D Level III data archive.   

 Two problems were encountered when collecting the storm cell attributes.  

The first problem pertained to the selection of the storm cell that likely generated 

the convective gust.  To mitigate this problem, the KSC mesonetwork tower to 

which the maximum gust occurred was noted.  By using Figure 1, which displays 

the various towers in the KSC mesonetwork, the closest cell ID to the location of 

the tower was used.  The second problem came about as a result of the radar 
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beam not being able to detect the exact echo top height.  In a small minority of 

the episodes chosen, an estimate of the echo top height was given for some 

cells—typically reported as greater than some specified height.  The most likely 

cause for this is probably due to the actual cell top height being too high for the 

radar to measure.  For these cases, only this specified height (i.e. the height that 

the radar beam could reasonably assume was the height of the cell) was used as 

that cell’s echo top.  This effectively truncated the cell top height of some of the 

cells to this minimum cell top height. 

 
2)  CORRELATIONS OF RADAR VARIABLES TO OBSERVED KSC GUSTS 
 
 Several studies, as described in Chapter 1, have described various base 

reflectivity and / or radial velocity signatures characteristic of microbursts.  It may 

also be of interest to show which of the variables in Section 3(b) are best 

correlated to KSC convective wind speeds.  Tables of calculated R2 values to the 

observed KSC gust for each parameter in Section 3(a) will be provided.  These 

correlation statistics may reveal qualitative assessments as to which of the three 

equations in Sullivan (1999) may work well as forecasting aids.     

 
3)  EVALUATION OF THE ECHO TOP / VERTICALLY INTEGRATED LIQUID EQUATION 
 

 As mentioned in Chapter 1, Sullivan (1999) performed an initial error 

evaluation of three predictive wind gust equations for the KSC/CCAFS complex 

using WSR-88D data for 15 warm-season microbursts.  Because of the limited 

dataset, Sullivan suggested that his findings may not be conclusive.  This thesis 

will update Sullivan (1999) using just the Echo Top/Vertically Integrated Liquid 
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wind gust potential equation (ET/VIL), but for a 44-sample dataset of wind 

speeds—30 warning-criteria wind speeds and 14 below-criteria wind speeds.   

 The ET/VIL relationship based from theoretical work done by Emanuel 

(1981), and was mathematically derived by Stewart (1996), as follows: 

 
 
                            ( ) ( )2610125.3628571.20 ETVILw ⋅×−+⋅= −                      (11) 
 
                                                                                                                          

Where VIL is the cell-based VIL (in kg m-2), ET is the Echo Top (in kilofeet), and 

w is the maximum predicted downdraft speed (in m s-1).      

 The same statistical error parameters that were used by Sullivan (1999) to 

evaluate the RAOB wind gust forecasting tools (i.e. RMSE, MAE and number of 

“hits”) were recomputed using the larger dataset and then compared with 

Sullivan’s results for the ET/VIL equation.   

 
4) ADDITIONAL RADAR TECHNIQUES 

 
 Recall from Chapter 1 that several studies (Proctor 1989; Srivastava 1987; 

Atlas et al. 2004) have shown that the precipitation type that falls out of a 

convective cloud is important in determining whether or not wet microburst 

generation occurs.  More specifically, the above authors found that meltwater 

from hailstones are required for microbursts to form in weakly unstable lapse rate 

environments.  Those findings will be tested using the 44-case dataset described 

above.  The height (in kilofeet) and value (in dBZ) of the maximum radar 

reflectivity prior to convective wind onset—taken from the “Storm Structure” 

datafile as mentioned previously--will be compared to the observed height of the 
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freezing level.  Freezing level data (in units of kilofeet) will be taken from the 

most recent XMR RAOB.  The assumption implied here is that storms with 

maximum reflectivity cores above the freezing level have a greater potential to 

produce hailstones (and following the research findings from the authors 

previously mentioned, wet microbursts), especially if the associated reflectivity 

value is also sufficiently high.  A graph showing the difference in height between 

the max reflectivity height and height of the freezing level, the max reflectivity 

value, and the associated KSC wind gust was created to show if these previous 

research results apply to forecasting KSC/CCAFS convective wind episodes. 

 Using MATLAB statistical software, a multiple linear regression model was 

built that uses the storm cell attributes as predictors.  The predictors were 

selected using forward selection procedures.  Significance of this new model will 

be tested with an ANOVA table F-test, and an assessment of the normality of the 

regression residuals.  To assess its potential as a future operational tool, this 

equation was tested against a 22-case dataset, independent from the 44 cases 

that were used in its development.  The 22-case dataset includes both below 

criteria wind speeds and above warning-criteria wind speeds.  Similar error 

statistics computed for the ET/VIL equation will be computed for this new 

equation so that comparisons can be made.       
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CHAPTER 3 
 
 

1.  Verification of existing RAOB-based forecasting tools 
 
a. Climatological frequencies of warning-level convective wind gusts 
 
 Before discussing the evaluation results of the various forecast tools that 

use radiosonde data as input, it is prudent to provide some background as to 

how often the ≥ 35 kt peak convective winds occur at KSC/CCAFS.   

 Figure 5 shows the warm-season monthly climatology of convective wind 

occurrences. This figure shows the lowest and the highest number of days that 

any convective wind speed occurred for each month in any of the 11 years that 

comprise the convective wind climatology.  Also shown here is the average 

number of convective wind days for each month (shown in the red bars on Figure 

5).  From the figure, it can be shown that the average number of occurrences of 

any convective wind speed reaches a maximum in August, and the average 

reaches a minimum in May.  It was shown in Koermer and Loconto (2005) that 

the monthly climatology of warning-level convective winds follows a normal 

distribution, with the peak centered around July and with minima in May and 

September.   

   Figure 6 shows the distribution of convective wind speed occurrences by  
 
synoptic flow regime as characterized by Lericos et al. (2000) and defined in 
 
 Chapter 2.  Also shown in Figure 6 is the average peak convective wind speed 

in that particular flow regime.  From the figure, it is observed that not only are 

westerly flow regimes favored for convective winds, but the westerly flow regimes 

are also characterized as having higher mean peak convective wind speeds.           
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 Figure 5.  Monthly climatology of all convective winds at KSC/CCAFS.   
                 Adapted from Cummings et al. (2007).   
 
 

 
     Figure 6.    Distribution of all convective wind speeds by flow regime.   
                       Adapted from Cummings et al. (2007). 
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  Figure 7 shows the number of peak convective wind speeds separated 

into 5-knot convective wind speed categories.  The distribution of peak 

convective winds over the 11 year climatology follows an approximate Gumbel 

cumulative probability function.  The curve of this distribution is shown in green in 

Figure 7.  The general trend is that higher peak wind speeds tend to decrease in 

occurrence from the peak wind speed occurrence maximum of between 20-24 

knots.   

 
 

 
    Figure 7.    Distribution of peak convective wind speeds by wind speed  
                                category.  Adapted from Cummings et al. (2007).  
 
 

Integration under this Gumbel equation for some arbitrary lower-bound 

wind speed to infinity will yield specific probabilities of various convective wind 
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speed ranges.  For instance, integration under the curve provides a probability of 

.31 for ≥ 35 knot convective winds.  Put another way, according to the Gumbel fit, 

warning-level convective winds occur just less than one-third of the time.  Less 

frequent probabilities are discovered for ≥ 50 knot wind speeds and ≥ 60 knot 

wind speeds, with probabilities of .07 and .02, respectively, for these more 

severe wind speed categories.      

 
b. General forecasting verification of MDPI and WMSI 
 
 Figure 8 shows the various forecasting verification metrics for both MDPI 

and WMSI.  The two forecast indices appear to be quite similar in terms of the 

various forecasting verification indicators.  For both indices, the WMSI and MDPI 

both predict a positive warning-level wind detection and false alarm at roughly 

the same probability (about 50%).  It does appear that MDPI is a slightly better 

index, but the high false alarm rates for both indices suggest that neither MDPI or 

WMSI are reasonably reliable forecasting aids.       

 
c. Forecast verification of MDPI and WMSI by synoptic flow regime 

 
 The next two sections will show the evaluation of the Microburst Day 

Potential Index (MDPI) and Wet Microburst Severity Index (WMSI) by synoptic 

flow regime.   

 
1)  MICROBURST DAY POTENTIAL INDEX 

 
 Figure 9 shows a bar graph of the various forecast skill scores defined in 

Chapter 2 as applied to MDPI as a function of flow regime.  Recall that an ideal 

index is one that has a POD of near 1 and a FAR of near zero.  
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  Figure 8.  General forecast verification for MDPI and WMSI.   
 
 

Examination of Figure 9 shows that the MDPI forecasts warning-level 

convective wind speeds that occur under the SW-2 flow regime relatively well, 

with a POD of just above .60 and a FAR that is slightly less than .30. 

However, for most of the other flow regimes, the FAR is undesirably quite high, 

with values reaching higher than .50.  In some regimes (Missing, NE, NW, and 

SE-2), we find for these regimes that the Heidke’s skill score is negative, implying 

that the MDPI has worse forecast skill than random chance forecasting.  

 

2)  WET MICROBURST SEVERITY INDEX 
 
 Figure 10 shows the same bar graph as Figure 9 but for the WMSI.  

Based on the figure, similar results are found for WMSI as observed for MDPI.  

The only flow regime that WMSI will forecast warning-criteria winds reasonably. 
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                 Figure 9.  MDPI forecast verification statistics by flow regime. 
   

 
               Figure 10.  As in Figure 9, but for WMSI.  
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It is also observed that exceedingly high FARs for the other flow regimes make 

this index also an ineffective forecasting tool for these other regimes. 

 
d. Monthly forecast verification of MDPI and WMSI 
 
 To assess potential monthly skill in MDPI and WMSI, the following 

sections will show forecast verification statistics of MDPI and WMSI by month.  

1)  MICROBURST DAY POTENTIAL INDEX 

 Figure 11 shows the verification metrics computed for MDPI by month. 

This figure shows that the general trend is for MDPI to perform better as the 

warm season gets later and later.  Excluding the month of September, for MDPI 

the POD increases modestly as the FAR decreases.  It best forecasts warning-

level episodes in the month of August.  Generally speaking, MDPI forecasts 

monthly occurrences of warning-level gusts only adequately at best. 

2). WET MICROBURST SEVERITY INDEX 
 
 Figure 12 shows the forecast verification for WMSI.  The general trend for 

WMSI is that from May through August, both the POD and FAR increase linearly, 

while decreases in POD and FAR are noted in September.  The May CSI value is 

actually quite high (nearing a value of .6), while both POD and FAR for these are 

low.  The CSI quantifies how successful an index is at predicting “rare” events 

(i.e. when event non-occurrence occurs more frequently.  There are two possible 

reasons for this result—the number of May events is low, and as implied by the 

low FAR, that the number of false alarms is also a low value.  Referring back to 

Eq. (5) in Chapter 2, the combination of these two factors results in the 

denominator of Eq. (5) being small (values for b and c are small). 
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      Figure 11.  MDPI forecast verification stratified by month.   
 

 Figure 12.  As in Figure 11, but for WMSI. 
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e. Error evaluation of RAOB-based peak convective wind gust predictors 

 
 This section will show the results of the error evaluation of the four peak 

convective wind gust forecast predictors (i.e. WINDEX, Snyder Method, T1 and 

T2).   

 Figure 13 plots the predicted wind gust speeds from each of the various 

techniques versus the observed convective wind gust measured from the KSC 

mesonetwork.  From the figure, as expected, none of the four indices that were 

evaluated predicted the observed peak gust (shown by the dark blue line) with 

any consistency.  The T1 and the Snyder Method have two biases that are 

evident from the figure.  The T1 (pink curve) has a marked high bias, while the 

Snyder Method has a low bias.  The Snyder Method might have a low bias 

because of the fact that one of the terms in its computation involves adding the 

mean wind speed 5,000 ft above and below the Wet Bulb Zero height.   

 Because wind speeds during the Florida warm-season are light, this term 

in the Snyder Method is low.  For the severe winds (≥ 50 knots) the techniques 

generally underpredict the peak gust.  The T1 does appear to do an adequate job 

at predicting the gusts for these events, but this is more likely because of its high 

Meanwhile, for winds speeds less than 50 knots or so, excluding the Snyder 

Method, a general overestimate of the observed wind is noted from the 

techniques.  An error table the shows the RMS error, Mean Absolute error and 

number of hits is shown in Table 6.  It can be inferred qualitatively from Figure 13 

that there does not appear to be any significant correlation between the observed 

convective wind speeds and the peak speed as predicted from any of the four 
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methods evaluated.  This is supported quantitatively by Table 7, which 

summarizes the correlations between the observed peak gust and the predicted 

gust by T1, T2, WINDEX or the Snyder Method, as values are very close to zero.      

 
   Table 6.  RAOB wind gust error table. 
 
 
 
 
 
 

 

           Figure 13.  Line scatterplot of predicted wind speeds from T1, T2,  
                             Snyder Method and WINDEX versus observed peak gust. 
    
       

Table 7.    Correlation between observed gusts and predicted 
            gusts for each RAOB gust prediction technique.   

 
Technique Correlation
T2 0.0349
T1 0.0249
WINDEX 0.0113
Snyder 0.0005

 T1 Gust T2 Gust Snyder WINDEX 
RMSE 14.81041 8.791783 20.7075 10.47259 
MAE 12.01713 7.340909 18.4596 8.49495 
Hits 14 18 5 14 
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CHAPTER 4 
 

 
4.  Evaluation OF WSR-88D Doppler radar forecast tools 

 
a. KSC peak convective wind speeds versus various storm cell attributes 
 
 Figure 14 shows a scatterplot of the peak convective wind speed 

measured at KSC versus values of cell-based VIL for each of the 44 convective 

wind episodes included in the radar study.  Recall that 30 of these episodes had 

warning-criteria wind speeds and that 14 had below warning-criteria wind 

speeds.  Subjectively speaking, there does appear to be a linear relationship 

between the two quantities.  Most of the weaker convective wind speeds (i.e. 

those between 19 and 40 knots) tend to have cell-based VIL values ranging 

between 10-15 kg m2.  Values of cell-based VIL above 20 kg m2 appear to 

characterize strong to severe wind speeds of ≥ 45 knots, while cell-based VIL 

values above 35 kg m2 are almost exclusively associated with wind speeds 

exceeding 50 knots.  High values of cell-based VIL are characteristic of strong 

thunderstorms, ones that are likely to exhibit intense rainfall and/or the presence 

of hail. 

 Figure 15 shows a scatterplot of the peak KSC wind gusts versus Echo 

Tops (in thousands of feet).  There does not appear to be as strong of a linear  

correlation between these two variables as was shown with cell-based VIL. 
 
In general, a good majority of the cells that produce warning-criteria wind speeds 

have echo tops of ≥ 29,000 ft.  Nearly all below-criteria wind gusts (and a few 

above-criteria wind episodes) occur with echo tops less than this value.   
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  Figure 14.  Scatterplot of peak KSC wind gust vs. Cell-based VIL. 
    

 
   Figure 15.  As in Figure 14, but for echo tops. 
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 Since VIL and the Echo Top are used to derive the VIL Density parameter, 

it seems appropriate to show the scatterplot of VIL Density versus KSC peak 

wind gusts.  This is shown in Figure 16.  There does appear to be a fairly good 

linear relationship between VIL density and peak KSC wind gusts for warning-

level events, but below-criteria events can have values ranging from around 1.3 

kg m3 to near 3.7 kg m3, resulting in a weaker correlation for VIL density for all 

wind speeds. 

 
 
   Figure 16.  As in Figure 14, but for VIL density.   
 
 

The wide variation in VIL density values for below-criteria wind events is 

probably more due to variations in cell echo top than in cell-based VIL.  Because 

for most cases values of cell-based VIL for below-criteria wind cases is generally 
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small (~10-15 kg m2, from Figure 14), under these conditions a less vertically-

developed storm (generally characteristic of below-criteria events from Figure 15) 

would still yield a potentially large value of VIL density.  Taking this into account, 

it can be seen from Figure 16 that values of VIL density that exceed 2.5 kg m3 

are more likely to be associated with warning-level wind speeds.   

 A scatterplot between peak KSC wind gusts and values of peak reflectivity 

is shown in Figure 17.  There does appear to be a fairly good correlation between 

the peak KSC wind gust and the value of maximum reflectivity.  Most of the 

below-criteria wind episodes are associated with maximum reflectivities less than 

about 55 dBZ.  Cells that have maximum reflectivities above about 58 dBZ are 

generally characteristic of cells with severe wind speed potential (exceeding 50 

knots).  Maximum reflectivity values this high would seem to be necessary to 

maintain the very intense rain shafts that accompany wet microbursts; however, 

values this high also might indicate the presence of hailstones in the convective 

cloud.   

 Figure 18 shows the scatterplot of KSC peak convective wind speeds 

versus the height of the maximum reflectivity.  From the figure, the relationship 

between the peak convective wind speed and the height of maximum reflectivity 

is weak.  Most of the wind speeds ≥ 45 knots have max reflectivity heights 

generally above 15,000 ft.  It is difficult to pinpoint a value that would best 

differentiate between above-criteria wind speeds and below-criteria episodes, but 

a value of ≥11,000 ft would probably best fit this value. 
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Figure 17.  As in Figure 14, but for maximum reflectivity. 

 
 

 
Figure 18.  As in Figure 14, but for max reflectivity height. 
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   Table 8 shows the correlation statistics between the variables previously 

described and the peak KSC convective wind speed.  The general subjective 

descriptions of the strength of the linear relationship between the various cell 

attributes and the peak KSC wind gust from the individual scatterplots are 

verified quantitatively in Table 8.  Based on the table, and on the previously 

shown figures, cell-based VIL and maximum reflectivity are the best correlated 

variables.   

 
       Table 8.  Correlation statistics table.   
   

Cell Attribute Correlation 
Cell-based VIL 0.5806
Max Reflectivity 0.5123
Echo Top 0.4067
VIL density 0.3979
Height Max Z 0.3108

 
 
 
b. A possible relationship between peak KSC convective winds and hail potential 
 
 As shown in the previous section, it was found that the values of cell-

based VIL and maximum reflectivity were best correlated to the observed KSC 

peak convective wind gust.  The fact that these two predictors were best 

correlated is interesting in the sense that both parameters are also potential 

indicators of the presence of hail, and as shown in Chapter 1, several authors 

have specified through the results of modeling studies that hailstones be present 

for melting to produce wet microbursts in stable temperature lapse rate 

environments.   
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 To further research these findings for potential operational significance, 

Figure 19 was constructed.  This plots both the value of maximum reflectivity 

(shown by the dark blue line which follows the right y-axis) and the difference in 

height in kilo-feet between the height of maximum reflectivity and the RAOB-

obtained freezing level height (shown by the light blue bars associated with the 

left y-axis, with positive height differences indicating reflectivity heights above 

freezing level) against the observed wind speed.  The assumption here is that 

cores that lie above the freezing level and associated with very high maximum 

reflectivity values have a good risk of producing hail. Negative height differences 

(indicating cell cores whose height falls below the freezing level) are generally 

characteristic of cells with resulting peak convective wind speeds between 19 

and 44 knots.  While both low-end above-criteria and below-criteria wind speeds 

generally have cells with cores that do not approach the freezing level, low-end 

warning criteria events have slightly higher max reflectivity values.  However, for 

the more significant wind speeds (≥ 45 knots), and in particular for the severe 

wind gusts exceeding 50 knots, cell cores were found to be tall enough to lie 

above the freezing level. 

Thunderstorms that yielded winds in this severe windspeed range also 

had much larger values of maximum reflectivity, shown by the large jump in the 

blue dotted line.  Although not shown explicitly here, it can be inferred from 

Figure 14 in the previous section that high values of cell-based VIL were present 

for the severe wind gusts.  Given these results, combined with those mentioned 

in the previous section, thunderstorms with a potential to produce hail would also 
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stand to have a greater chance to produce wind speeds that meet or exceed 45 

knots.  These results also would lend support to the modeling research results 

suggested by previous authors.   

 
 Figure 19.  Max reflectivity minus RAOB freezing level height difference,  
                             value of max reflectivity versus peak KSC wind gust speed. 
 
 

c. Evaluation of the Echo Top/VIL Wind Gust Potential Equation 

 Figure 20 shows a scatterplot of the peak KSC wind gust versus the gust 

predicted by the Echo Top/VIL gust equation as defined in Chapter 2.  The 

Pearson correlation coefficient is also shown in the figure in order to get a sense 

of how correlated the two variables are to each other.  Based on the figure, a 

fairly strong positive correlation exists between the predicted gust computed from 

the ET/VIL wind gust equation and the peak observed value from the KSC 
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mesonet.  Thus, in general, higher values of wind gust speed as predicted by 

ET/VIL are fairly strongly correlated with increasing values of peak KSC wind 

speeds, which is what is desirable in comparisons of observed versus predicted 

wind gust scatterplots. 

 Figure 21 was created in order to assess any systematic biases in the 

ET/VIL relationship (i.e. to assess under- or over-forecasts of wind gust speeds).  

Looking at Figure 21, it appears that the ET/VIL relationship grossly over-

forecasts below-criteria convective wind speeds.  There is more variability in the 

plots of warning-criteria wind speeds, with no characteristic under- or over-

forecasting bias evident from the figure.   

 Table 9 show a summary table of various computer error metrics for the 

ET/VIL relationship, stratified by various wind speed categories.  From the table, 

the ET/VIL will generally predict a thunderstorm’s peak wind speed with errors 

between 6-8 knots. 

 Larger errors are encountered for below criteria wind episodes, which 

makes sense given the plot shown in Figure 21, with much less error for above-

criteria wind speeds.  For using ET/VIL as a guidance tool for issuing convective 

wind warnings, even though a pretty strong positive correlation exists between 

ET/VIL predictions and observed gust speeds, the ET/VIL relationship seems 

poorly suited for accurately differentiating between below-criteria winds and 

above-criteria wind speeds  Although this is unrealistic from a forecasting 

standpoint, if it is reasonably known in advance that a warning-level gust will 

occur, the ET/VIL does yield fairly accurate values of peak wind speed.   
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   Figure 20.  Scatterplot of ET/VIL predicted gust speed vs peak observed gust 
                     speed, with correlation coefficient in upper right corner. 
     

 Figure 21.  Plot of observed wind gust values versus that predicted by the  
                              ET/VIL equation.   
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.    Table 9.  Error Statistics Table for ET/VIL. 
 
 
 
 
 
 
 
 
 
 
 
 
 These re-computed errors are found to be much better than those errors 

reported in Sullivan (1999), who considered only 15 warning criteria wind speeds 

and found errors that ranged between 9-11 knots and only five “hits.”  Looking at 

the warning-criteria wind speed error calculations in Table 9, those same errors 

decrease by about 50% and received four times as many “hits” by using a larger 

dataset.   

    

 

 

 

 

 
 
 
 

Category RMSE MAE     Hits % Hits 
All Winds 8.1 6.58 26 60.4 
Below 
Criteria 11.5 9.65 5 35.4 
Above 
Criteria 5.93 5.23 21 70.0 
35-49 Knots 5.45 4.95 14 68.4 
≥ 50 Knots 6.67 5.72 7 54.5 
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CHAPTER 5 
 

 
5. Convective wind forecasting improvements 

 
a. New WSR-88D convective wind gust prediction equation 
 

The Echo Top/VIL Wind Gust Potential Equation was evaluated on the 

basis of RMS and Mean Absolute errors in the previous chapter.  One of the 

major deficiencies of the ET/VIL relationship that was found from that evaluation 

was that the ET/VIL equation had undesirably high errors for thunderstorms that 

produced wind gusts below KSC warning criteria.  Thus, because the ET/VIL 

equation works best for warning-level wind gusts events and not equally as well 

for < 35 knot wind speeds, it is probably not suited for distinguishing between 

thunderstorms that produce KSC warning-level wind gust speeds versus those 

that do not. 

To potentially solve this problem (i.e. produce an equation that works 

reasonably well for all convective wind speeds), a new radar peak wind gust 

equation has been developed that use some of the Storm Structure cell attributes 

as predictors using multiple linear regression techniques.  This section will 

present how this equation was developed from a statistical standpoint.  Errors will 

then be calculated using an independent dataset of 22 thunderstorm wind gust 

events to test its promise as an operational forecast tool. 

 
1)  DEVELOPMENT OF REGRESSION EQUATION 

 
Using forward regression predictor selection techniques in Matlab, the following 

multiple linear regression equation has been developed: 
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GU VIL MaxZ height= × + × + × −(. ) (. ) (. ) .4138 9194 6253 28 7719       (12) 
 
 
where VIL is the cell-based VIL (in kg m-2 ), MaxZ is the maximum reflectivity (in 

dBZ), height is the height of maximum reflectivity (in kilofeet) and GU is the 

predicted peak wind gust (in knots). 

 Table 10 displays the ANOVA table for the above regression equation. 

From the ANOVA table and its components, it appears as though the regression 

equation is suitable.  The F-statistic, a ratio of the mean-squared regression 

value to the mean-squared residual indicating the relative appropriateness of the 

model, is arbitrarily high enough to suggest that the regression equation is 

appropriate.  The coefficient of determination, R2, for this regression equation 

was found to be .6314, while the adjusted coefficient of determination, Ra
2,   was 

.6031.  Both of these values suggest that the predictor variables are reasonably 

good at explaining any variations in the predictand. 

      Table 10.  ANOVA table. 
 
 
 
 
                
   

. 

 In an ideal regression equation, its residuals will be both serially 

uncorrelated to each other and follow a Gaussian distribution.  Figure 22 shows a 

Normal probability plot (or Q-Q plot) of the regression residuals. A perfect 

Gaussian distribution is represented by the red dash-dotted line.  The closer that 

 
Source Df SS MS  
Total 43 6410.6   
Regression 3 4047.8 1349.3 F=22.271 
Residual 39 2362.8 60.586  
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the residuals (given as the blue plus sign marks in Figure 22) follow this line, the 

better the assumption is that the residuals are to being normally distributed.    A 

perfect Gaussian distribution is represented by the red dash-dotted line.  

According to the figure, with exception of the upper tail, the residuals do follow an 

approximately normal distribution.  A common test of autocorrelation in the 

residuals is the Durbin-Watson test.  For this regression, the Durbin-Watson test 

statistic was found to be .8453, with an associated p-value of 5.95 x 10-6. In this 

test, the null hypothesis is that the residuals are uncorrelated with an alternative 

that the residuals are autocorrelated.  Based on the p-value, the null hypothesis 

can be rejected in favor of the alternative hypothesis, resulting in the residuals 

being autocorrelated.  Because the test statistic is small, these residuals are also 

positively autocorrelated. 

  
2) EVALUATION AND VALIDATION 

 
 Figure 23 shows a scatterplot of the KSC observed peak wind gust versus 

that predicted by Eq. (12) developed above using the independent dataset. 

Figure 23 shows a strong linear correlation between the observed peak wind gust 

versus that predicted by Eq. (12).   

To assess any biases in Eq. (12), Figure 24 shows a plot of the observed 

peak wind gust versus that predicted by Eq. (12).  The largest errors appear to 

be for the strong to severe wind speeds (≥ 50 knots), but there does not appear 

to be any characteristic under- or over-forecasting bias between all wind speeds. 
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                           Figure 22.  Q-Q plot of regression residuals. 
. 

Table 11 shows the error statistics table for Eq. (12).  Based on the table, 

there is a much more accurate error for the below-criteria wind speeds compared 

to that from the ET/VIL equation (compare Table 9 in Chapter 4 to Table 11 that 

follows).  However, errors are slightly higher for above-criteria wind speeds, but 

most of these errors come from the higher errors reported for ≥ 50 knot wind 

speeds.  Generally speaking, however, compared to the ET/VIL equation for all 

convective wind speeds, there is about a 1-2 knot improvement in the error using 

Eq. (12).  Much of this improved accuracy is due to the fact that below-criteria 

wind speeds were predicted with greater than 50% better accuracy. 
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Figure 23.  Scatterplot of observed versus predicted peak wind gusts  
                            using Eq. (12). 
 
 
b. Forecasting warning-criteria convective winds using theta-e lapse rates 
 
 In Chapter 3, it was found that two RAOB-based convective wind gust 

forecasting aides—the MDPI and WMSI—both correctly and incorrectly forecast 

KSC convective wind warning-criteria episodes at approximately equal 

probabilities (~50%).  It was also found that both of these tools appear to forecast 

convective wind warning episodes under westerly flow regimes (see Chapter 2 

and Lericos et al. (2000)) with better accuracy, but are not nearly as successful 

at forecasting the same with the other flow regimes.  Because westerly flow 

convective wind days possess the highest climatological frequency of warning-

criteria wind episodes as well as the highest mean convective wind speed (see 

Figure 6 in Chapter 3), the warning-level wind gusts that occur under the other 

flow regimes are viewed as being “unanticipated” from a forecasting perspective. 



 56

 

             Figure 24.  Plot of peak observed gust versus predicted from Eq. (12). 

 

Table 11.  Error Statistics Table for Eq. (12). 
 
 
 
 
 
 
 
 
 

 

 
1)  CLIMATOLOGICAL MEAN VERTICAL THETA-E PROFILES 

 
Figure 25(a) shows a comparison of the mean vertical profile of equivalent 

potential temperature for warning-level convective wind gust days and for below-

warning criteria convective wind gust days, while Figure 25(b) shows the 

associated p-value from comparing the two categorical profiles via a Student’s t 

Category RMSE MAE Hits %Hits 
All Winds 6.39 5.25 13 59.02 
Below Criteria 5.22 3.96 7 77.78 
Above Criteria 7.09 6.14 6 46.1 
35-49 Knot 5.44 4.9 5 55.56 
≥ 50 Knot 9.85 8.92 1 25 
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test, assuming that there is no significant difference between the profiles as 

being the null hypothesis.   Figure 25(a) shows that in the mean, warning-level 

convective wind gusts have warmer equivalent potential temperatures at lower 

levels and slightly cooler equivalent potential temperatures at or slightly above 3 

km then those for below-criteria convective wind episodes.  Thus, warning-level 

gusts are more likely to have a strong lapse rate of theta-e.  This suggests that 

examining the theta-e lapse rates could be used as a basis for issuing convective 

wind gust warnings at the KSC/CCAFS complexes 

 Figure 25(b) indicates that not all vertical layers of mean theta-e are 

statistically significant at the 95% level.  However, the lower layers (~0-2 km) and 

a layer just above 3 km are found to be 95% significantly different.  These results 

might suggest that the lapse rate of theta-e be calculated as: 

 

                                                      z
eeLR ∆

−
=

*θθ
                                               (13) 

 
where LR represents the theta-e lapse rate (in K km-1), θe  is the maximum theta-

e value encountered from the 0-1 km layer (in Kelvin), θ*
e  is the first minimum 

theta-e encountered at or above 3 km (in Kelvin), and ∆z represents the height 

difference (in kilometers) between the maximum theta-e and minimum theta-e as 

previously defined. 

2) ESTABLISHING THRESHOLD VALUES OF THETA-E LAPSE RATE BY FLOW REGIME 
USING ROC DIAGRAMS 
 
 Figure 26 shows the ROC diagram for the SW-1 flow regime.  Based on 

Figure 26, a value of theta-e lapse rate of 7.0 K km-1, as computed by Eq. (13), 

yields a POD of .76 and a FAR of .31.  
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                                                                  (a) 
 

 
                                                                (b) 
 

Figure 25.  (a) Mean vertical profiles of theta-e and (b) associated p-values. 
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Figure 26.  ROC diagram for the SW-1 flow regime. 

 

  Figure 27 shows the ROC diagram for the SW-2 flow regime. Note 

the markedly linear trend that is shown in Figure 27.  This implies that as the 

POD increases, so does the FAR, suggesting a little less reliability. The optimum 

theta-e lapse rate as computed by Eq. (13) above was found to be 8 K/km-1.  

Using this threshold value, results in a POD of .59 and a FAR of .41. Note the 

markedly linear trend that is shown in Figure 27. 

Figure 28 shows the ROC diagram for the SE-1 flow regime.  Examining 

Figure 28, a lapse rate value of 9.0 K km-1 results in a POD of .55 with a FAR 

being a low .18. 

Figure 29 shows the ROC diagram for the SE-2 flow regime. Here, a 

theta-e lapse rate value of 5.9 K km-1 yields a POD of .75 and a FAR of a low 

.19.  Here, a theta-e lapse rate value of 5.9 K km-1 yields a POD of .75 and a 

FAR of a low .19. 
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Figure 27.  As in Figure 26,for the SW-2 flow regime. 

 
 

 
Figure 28.  As in Figure 26, but for the SE-1 flow regime. 

 
 

 
Figure 29.  As in Figure 26, but for the SE-2 flow regime. 
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 Figure 30 shows the ROC diagram for the Other flow regime. Figure 30 

With that in mind, a theta-e lapse rate value of 8.0 K km-1 results in a POD of 

.51512 and a FAR of .358. 

 
Figure 30.  As in Figure 26, but for the Other flow regime. 

 
 

To summarize these results, the optimum values of theta-e lapse rate that 

were found from the ROC procedures are presented for all flow regimes in Table 

12.  Forecasters should recognize that for the PAN, NW, NE and Missing flow 

regimes, the optimal lapse rates for these may not be accurate because a small 

number of cases were used for these respective flow regimes.  Because of the 

small number of cases, the ROC diagrams for each of these respective regimes 

have oddly-shaped curves.  Thus their ROC diagrams for these four other flow 

regimes are not presented here; for completeness however the optimal values of 

theta-e lapse rate are presented from the diagrams constructed for these small-

sampled flow regimes. 
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Table 12.  Summary of optimal theta-e lapse rates using ROC procedures. 

 
 
 
 

Flow Reg. Theta-e Lapse Rate Value (K km-1) POD FAR 
SW-1 7 0.76 0.31 
SW-2 8 0.59 0.41 
SE-1 9 0.55 0.18 
SE-2 5.9 0.75 0.19 
Other 8 0.52 0.36 
Missing 6.5 0.75 0.9 
NW 6.5 1 0 
NE 5 0.75 0.93 
PAN 9.5 0.75 0 
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CHAPTER 6 
 

 
6.  Discussion and summary 
 
a. Short-term forecasting of convective winds using Doppler radar techniques 
 

There are a couple of caveats and/or considerations that pertain to the 

radar results presented in Chapter 4 that are worth mentioning here.  The first of 

these is that the computation of the various storm cell attributes from the SCIT 

algorithm that were analyzed in Chapter 4 are dependent on the scan strategy 

and volume coverage pattern (VCP) to which the Melbourne, FL Doppler radar is 

set.  Different VCP patterns have different numbers of vertical levels that are 

sampled.  Because parameters such as cell-based vertically integrated liquid and 

maximum reflectivity, for example, depend in part on the number of vertical levels 

sampled by the radar, these values would potentially be different for different 

VCPs and might affect the results presented in Chapter 4.  Secondly, all of the 

radar results only consider storm cell attributes that occur one volume scan prior 

to the observation of the peak convective wind gust.   

 
1) PREDICTING CONVECTIVE WIND SPEEDS USING THE ET/VIL EQUATION OR EQ. 

(12) 
 

Some factors to acknowledge when considering the error statistics in 

Tables 10 and 11 in Chapters 4 and 5 for the ET/VIL equation or Eq. (12) relate 

to sampling of the downdraft using the KSC tower mesonet in terms of cell 

location and in terms of certain physical properties of the downdraft.  While the 

KSC mesonet is probably one of the best instrumented locations certainly in the 

United States to sample wet microburst winds, the two predictive equations 
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assume that the peak gust would occur directly underneath the cloud base.  It 

would thus require a mesonet tower to be directly underneath the base and 

receive a direct hit from the downburst core in order for this assumption to be 

met.  In most if not all cases this assumption is not valid.  In most scenarios the 

core of a downburst is located at some distance from a nearby mesonet tower, 

and so the tower would probably only be sampling the “fringe” wind speeds 

associated with the vortex ring that surrounds the microburst.  Studies by Fujita 

(1984) and as described in Rinehart (2004) note that the downburst core can tilt 

essentially as a function of the parent thunderstorm speed.  For slow-moving or 

stationary thunderstorms, the downburst core is more vertical, with wind speeds 

accelerating out at the same rate isotropically.  For thunderstorms that are fast-

moving, the core of the downburst would be tilted horizontally downwind of the 

storm’s motion.  Since most thunderstorms in east-central Florida during the 

summertime are typically slow-moving most downburst core orientations are 

probably more vertical, but some locally faster-moving cells could be observed to 

occur along sea-breeze/gust-front boundary collisions resulting in more 

horizontal tilting of the downburst core.  Neither of the equations consider terms 

that adjust for either of these two processes.   

 
2)  FORECASTING THE ONSET OF SEVERE CONVECTIVE WINDS USING HAIL 

INDICATORS  
 

Considering the infrequency of occurrence of severe convective 

windspeeds (~3% of all convective wind speeds; see Figure 7 in Chapter 3), the 

finding that most ≥ 50 knot convective windspeeds occur with maximum 
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reflectivity cores above the freezing level is a potentially significant one and one 

that requires some additional research before being conclusive.  From a 

preliminary standpoint these results are consistent with prior observational and 

modeling results as documented in Chapter 1.  Both melting and evaporation are 

both phase changes that promote cooling.  These preliminary results might 

suggest that strong convective windspeeds must have additional latent cooling 

owing to the melting of hail in addition to the latent cooling from any evaporation 

of raindrops into layers of dry air.   

 Hailstones will grow in size in the presence of supercooled water droplets.  

Supercooled droplets tend to become greater in number above the height of the -

5°C isotherm.  Although it is not known explicity if the maximum reflectivity cores 

were found to be above this isotherm, since most of the cores were generally 

3,000-5,000 ft higher than the freezing level, it could be inferred that most of the 

cores were near or above this height.   

 
3)   FUTURE RESEARCH USING WSR-88D DOPPLER RADAR 

 
 Because these results only consider radar-derived storm cell attributes 

one volume scan prior to microburst occurrence, it would be useful to test these 

results again over longer lead times.  This future research idea would most 

especially be true for the two radar gust equations, where it would be useful to 

determine how much lead time these two equations can provide.   There might 

be some difficulty in accomplishing this because of problems pertaining to 

tracking the same storm cell over time.  The SCIT algorithm can “drop” cell IDs 

and its constituent attributes depending on if the cell in question falls below the 
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minimum reflectivity criteria to be assigned an alphanumeric ID.  It would be 

seemingly impossible to know unambiguously if one was tracking the same cell if 

a cell ID was dropped and then re-assigned a different cell ID.   

 Another area of future research would be to consider evaluating other 

radar-derived parameters.  Because this project only considers reflectivity-based 

parameters, radial-velocity parameters should be evaluated.  In particular, storm-

relative radial velocity values should be analyzed because of their ability to detect 

storm-scale circulations such as microbursts.  Several authors have shown that 

mid-altitude radial velocity convergence leads to strong convective windspeeds, 

so it would be worthwhile to (a) determine if this radial wind convergence 

signature is also observed for KSC convective winds and (b) determine how 

much time in advance does the presence of this feature precede warning-level 

convective windspeeds. 

 There are several possible future research areas that deal with the 

possible correlation to predicting ≥ 45 knot convective winds with the potential for 

hail.  First, using an archive of maximum reflectivity and height of maximum 

reflectivity at various lead times, it would be worthwhile to investigate if the cores 

reside above freezing level at different lead times.  If these findings were found to 

be true over increasing values of lead time, another possible tool to consider 

evaluating would be the Hail Index and the output of the Hail Detection Algorithm 

(HDA) versus the observed KSC peak convective wind gust.  The HDA produces 

as output the Probability of Hail (POH) and the Probability of Severe Hail 

(POSH), as well as an estimation of the maximum size diameter hail to be 
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expected from a storm (MEHS).  Higher values of POH are achieved when the 

height of the 45 dBZ echo reaches higher heights above the freezing level.  

Higher POSH are found when 50 dBZ echo values are present above the -20°C 

isotherm.  It would be useful to investigate the correlation of these three indices 

(POH and POSH in particular since both values increase when high reflectivity 

values are found to reside above either freezing level and /or the -20°C height) to 

the convective wind speed. 

 With all that said, a potentially significant improvement to short-term 

convective wind forecasting using Doppler radar will come in the near future, 

when the current suite of Doppler radars across the U.S. will be equipped with 

polarimetric capabilities.  One of the benefits of polarized radar as applied to 

convective wind forecasting is differentiating between rain and the presence of 

hail.  Differential reflectivity (ZDR) has been shown to be particularly good at 

this—in particular, values of ZDR near zero infer the presence of spherical 

hydrometeors (e.g. hail).  If the presence of hail is required for strong/severe 

warning-level convective winds, forecasters might look for near-zero ZDR values 

as being possibly associated with these windspeeds.   

 
b. Forecasting KSC convective winds using radiosonde observations 
 
 

1) FORECASTING THE LIKELIHOOD OF KSC WARNING-LEVEL CONVECTIVE WINDS 
USING MDPI AND WMSI 
 
 It is apparent from the monthly evaluation of MDPI and WMSI that both 

indices perform generally better in mid-summer.  One reason for the better 

accuracy in both indices (in particular the MDPI) during the July to August 
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months may simply be because the boundary layer is warmer, moister and more 

potentially unstable than during the earlier months of May and June.  This would 

result in making it more favorable to achieve the various convective wind warning 

thresholds for these two indices.  It was also shown in the monthly evaluation of 

these two indices that the WMSI had much higher false alarm rates than MDPI.   

This is probably due to the fact that the denominator is probably too small to be a 

“filtering factor” that Pryor and Ellrod (2004) had intended it to be with regards to 

KSC convective wind forecasting.  CAPEs during the warm-season are above 

1000 J kg-1 quite commonly and so the current WMSI equation might capture 

more below-criteria convective wind days.  Increasing the denominator might 

result in a lower false alarm rate for WMSI.   

 Based on Figures 9 and 10 in Chapter 3, it was shown that both MDPI and 

WMSI generally forecast westerly flow-regime warning-level winds adequately at 

best, but have essentially little skill in detecting the same for the other flow 

regimes.  It should first be noted that there was a non-uniform number of events 

sampled for each flow regime (e.g. a greater number of convective wind days 

were present for westerly flow regimes than the number for the NE flow regime, 

for example).  For flow regimes where convective winds occur infrequently, it 

might show more accurate forecast skill scores for those flow regimes where 

convective winds occur infrequently by increasing the number of convective wind 

events for those flows.  With the sampling considered, it might suggest that there 

are other factors that might generate warning-level events under these regimes 

that aren’t captured by these two indices.   
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2)  FORECASTING THE MAXIMUM PEAK CONVECTIVE WIND GUST USING RAOB-

BASED TOOLS 
 
 Figure 13 and Table 6 in Chapter 3 suggest that there doesn’t appear to 

be a great deal of promise from any of the four peak convective wind gust 

forecasting aides that use RAOB data as input.   Based on Figure 13, both the 

previously unevaluated Snyder Method and the T1 gust forecasting tools show 

large systematic errors indicating that these two indices are not detecting the 

proper generating mechanisms for KSC convective winds.  The only remaining 

maximum peak convective wind speed forecasting tools are the T2 and WINDEX 

which only adequately at best predict the maximum peak convective windspeed.  

   The Snyder method has a low bias for all convective wind speeds.  The 

Snyder method includes a mean windspeed term in its computation that uses the 

mean wind from 5000 ft above and below the wet-bulb zero height as input.  It is 

hypothesized that much of the low bias is from this term because windspeeds 

aloft in the Florida warm-season are weak.  Thus the Snyder Method is probably 

best suited for areas other than Florida for detecting microburst winds.  The T1, 

on the other hand, has a systematic high bias which results in—misleadingly--

fairly accurate predictions of strong to severe convective windspeeds, but gross 

overestimates of the peak convective windspeed for peak convective windspeeds 

between 35-45 knots.  While the T1 also includes a mean windspeed factor, 

because the mean wind speed is climatologically small, removing the mean wind 

speed from the T1 gust speed calculating would likely still result in large errors. 
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 From Figure 13, the WINDEX has predictive values that are highly 

variable.  Although these dramatic drops or rises were not closely investigated, 

Ellrod et al. (2000) found that WINDEX is probably an underestimator of 

convective winds at night owing to the more stable lapse rate at night.  In the 

WINDEX computation, if the square of the surface-to-melting level lapse rate is 

less than 35, this term is set to zero.  This condition is more likely to be met at 

night when the sun is not out to warm the ground.  This might explain a number 

of the very low predictions for the windspeed.       

 
3) PREDICTING THE LIKELIHOOD OF WARNING-LEVEL CONVECTIVE WINDS BY 

USING THRESHOLD THETA-E LAPSE RATES 
 
 It was shown in Figure 25, Table 11 and in the ROC curves in Chapter 5 

that there appears to be promise in using threshold values of lapse rate of theta-

e with the thresholds defined by flow regime.  Using any given flow regime, a 

forecaster would be allowed to assess the threat of lightning and then assess the 

risk of warning-level convective windspeeds should lightning be a significant risk.  

 There doesn’t appear to be any favored flow regime bias using the theta-e 

lapse rate thresholds.  This can’t be said for the MDPI or WMSI, in which both 

show better accuracy for westerly flow regimes only.  As in the MDPI and WMSI 

evaluations one must consider that there were a larger number of convective 

winds on westerly flow regime days than on much less frequently occurring flow 

regimes.  For these flow regimes, this leads to a ROC curve that isn’t curvilinear 

but is more irregularly shaped owing to the small number of data points.  Results 

for these flow regimes are not as conclusive because of limited sampling.       
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4).  FUTURE RESEARCH USING RAOB-BASED FORECASTING TOOLS 

 
 As a first possible area of future research, some descriptive statistics of 

relevant RAOB parameters (e.g. CAPE, LI, PW, etc…) to convective wind gust 

forecasting should be calculated for (a) below-criteria and above-criteria 

convective wind days and (b) for all convective wind speeds.  Loconto and 

Koermer (2005) presented some summary statistics for several convective wind 

forecasting parameters from XMR RAOB data but use a small 10-case dataset.  

Any possible differentiating trends between below-criteria convective wind RAOB 

parameters versus those for above-criteria convective winds should be tested for 

statistical significance.       

 One area that should receive consideration for possible future research in 

using KXMR RAOB data for prediction of KSC convective winds is in the 

development of a new maximum peak wind gust forecasting tool and have it be 

tested against an independent dataset so that errors could be computed.  None 

of the 4 predictive equations were found to show much operational promise, 

which underscores the need for a new predictive gust tool that uses RAOB-

derived parameters.   

 Another area of potential future research is in the development of monthly 

mean vertical plots of theta-e (e.g. similar to that of Figure 25).  Figure 25 

considers an entire warm-season average of the theta-e for above-criteria winds 

versus below-criteria winds.  Because the mean vertical profile of theta-e in May 

might be quite different than the overall warm-season mean profile (from possibly 

colder low-level theta-e values and colder upper-level theta-e values), it might be 
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interesting to compose monthly mean vertical profiles of theta-e to see how these 

profiles vary by month.     

 
c. Thesis summary 

   The primary goal of this Master’s Thesis was to develop two things that 

pertain to warm-season convective wind gust forecasting at NASA’s Kennedy 

Space Center and Cape Canaveral Air Force Station: (a) an evaluation of 

existing RAOB and WSR-88D Doppler radar forecasting tools and (b) to improve 

upon such forecasts by developing additional forecasting aids that utilize RAOB 

and radar data.  Using quality-controlled, 5-minute averaged KSC tower 

mesonetwork peak wind data from over 40 towers between May through 

September of 1995-2005, in conjunction with radar, satellite, lightning, KTTS 

METARs and surface maps, periods in which convective wind speeds had 

occurred were identified.  From this chronological pool of “convective wind 

periods”, a sample of dates were selected in which KXMR RAOB data and/or 

Storm Structure WSR-88D storm cell attributes were analyzed.  Particular 

emphasis was placed on distinguishing between days in which maximum 

convective peak wind speeds of ≥ 35 knots was measured (considered to be 

“KSC warning-criteria”) versus those that were < 35 knots.        

 Using a suite of forecast skill/error metrics on RAOB-based forecasting 

tools, several strengths/weaknesses were unearthed.  The Microburst Day 

Potential Index (MDPI) and Wet Microburst Severity Index (WMSI), both of which 

are yes/no predictors of warning-criteria convective wind speeds, were found to 

predict a positive detection and a false alarm of warning-level convective winds 
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at essentially the same probability (~50%).  Monthly assessments of MDPI and 

WMSI forecasts suggest that both indices have better accuracy as the warm-

season gets longer, with a peak in accuracy in the month of August.  From a 

listing of Florida flow regimes defined by the location of a surface ridge axis that 

extends across the Florida peninsula emanating from the Bermuda High (Lericos 

et al., 2000) it is shown that both MDPI and WMSI best forecast warning-criteria 

winds on days when the flow is westerly.  While westerly flows correspond to 

climatologically-favored flow regimes for thunderstorms and convective winds 

across the Space Coast, these two indices do not forecast easterly and northerly 

flows very well.  These indices are also not good at detecting warning-criteria 

winds when the surface ridge is directly over the area.  In addition to these 

results, an error evaluation of 4 prominent RAOB-based maximum peak 

convective wind speed forecasting tools showed that none of these tools were 

consistently successful at predicting the observed peak convective wind speed.  

Of these 4, the T2 Max Predicted Gust was shown to be the most accurate, with 

RMS errors on the order of ~9 knots.  Two of these tools, the T1 and Snyder 

method, appeared to have systematic errors that resulted in large RMS errors.  

These errors are likely due to the fact that there are terms in the T1 and Snyder 

Method’s computations that are (a) small and/or (b) quantify physical processes 

that are not likely to be involved in generating warm-season convective winds at 

KSC/CCAFS.  The numerous flaws that were discovered in these RAOB-derived 

tools further underscored the need for convective wind forecasting 

improvements. 
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 Scatterplots of several Doppler radar-derived storm cell attributes (cell-

based VIL, maximum reflectivity, height of maximum reflectivity, echo tops, and 

VIL Density) versus the peak observed convective wind speed showed 

moderately strong correlations between cell-based VIL and maximum reflectivity 

to the peak convective wind speed.  Various error statistics were computed for 

the Echo Top/VIL (ET/VIL) wind gust potential equation using 43 days in which 

convective wind speeds occurred.  While calculated errors were found to suggest 

a reasonable accuracy for warning-criteria winds, large overforecasting errors 

were discovered for below warning-criteria winds.  This suggests that the ET/VIL 

equation is poorly suited for differentiating between warning-level winds versus 

wind speeds lower than KSC warning-criteria. 

 Using the maximum reflectivity and height of maximum reflectivity data 

from the WSR-88D Storm Structure product and the recorded height of the 

freezing level from the KXMR RAOB, a possible relationship between the 

prediction of strong to severe convective wind speeds ≥ 45 knots and hail 

indicators was discovered.  More specifically, it was observed that strong to 

severe convective windspeeds had their maximum reflectivity cores were found 

to penetrate above the 0°C level and were coincident with very high values of 

maximum reflectivity.  This result implies the presence of hail.  Conceptually, this 

result suggests that for strong convective windspeeds that the latent cooling 

associated with the melting of hail be present in addition to any latent cooling 

owing to the evaporation of raindrops into sufficiently dry enough layers.  This 

preliminary result is consistent with observational (Atlas et al., 2004) and 
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modeling studies (Srivastava 1985,1987; Proctor 1989) of strong wet microbursts 

in stable temperature lapse rate environments.            

  There were two convective wind forecasting improvements/aids that were 

developed in this thesis—a new predictive maximum convective peak wind gust 

tool and threshold values of theta-e lapse rate defined by the flow regimes in 

Lericos et. al. (2000).  The new predictive radar gust equation was developed 

using multiple linear regression techniques.  This equation includes cell-based 

VIL, maximum reflectivity and height of maximum reflectivity as predictors.  The 

same errors as were computed for the ET/VIL equation were computed for the 

new equation using a separate 22 case dataset.  Not only were the errors for all 

convective windspeeds for this new equation found to be 1-2 knots more 

accurate, but below-criteria windspeeds had very low errors, with errors only 

about 1-2 knots less accurate for warning-level events as compared to ET/VIL.  

Because of the much greater success at predicting below-criteria winds, this 

equation is viewed as an improvement that has the potential to show much 

operational promise.  Based on a plot of mean vertical profiles of theta-e, it was 

found that one possible distinguishing factor between warning-criteria winds to 

below-criteria winds may be a steeper theta-e lapse rate that uses the first 

minimum theta-e value encountered at or above 3 km.  Using a statistical 

procedure called Relative Operating Characteristics (ROC), threshold values of 

theta-e lapse rate were established for each flow regime.  Using the optimal 

values of theta-e lapse rate for each flow regime results in better accuracy at 
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predicting warning-level convective windspeeds regardless of westerly or 

easterly flow regime.   
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