METHODS FOR COMPUTING
THE BOILING TEMPERATURE OF
WATER AT VARYING PRESSURES

SAM MiLLER

Four functions for computing boiling temperature are tested and the results are

compared to data from the CRC Handbook of Physics and Chemistry.

evaporation that occurs when the saturation (or

equilibrium) vapor pressure is equal to the total
atmospheric pressure (Glickman 2000). But atmo-
spheric pressure varies with height (e.g., it is lower in
Denver, Colorado, than it is in Miami, Florida), so the
boiling temperature should also vary with height. It
ought to be a simple matter to manipulate the known
thermodynamic relationships to derive an equation
describing the boiling point of water at a given atmo-
spheric pressure. One such relation is the closed form
of the Clausius-Clapeyron equation:
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where ¢; is the saturation vapor pressure (Pa), ¢,
is the vapor pressure at the triple point of water
(611.12 Pa), I, is the latent heat of vaporization (equal
to 2.5008 x 10° J kg™ at 0°C, decreasing by about
10% as temperature increases to 100°C), R, is the
individual gas constant for vapor (461.2 J kg™ K™), T,
is the temperature at the triple point (273.16 K), and
T is the temperature (K) (Miller 2015). This equation
can be recast to show the relationship between total
atmospheric pressure and the boiling temperature
of water by
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where p, is the total atmospheric pressure at which the
water is boiled (Pa) and T, is the boiling temperature
of water (K) at pressure p,. By inverting this equation,
we can then compute the boiling temperature at any
given pressure. After about five steps, we arrive at
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There is a slight problem in using this expression to
compute all boiling temperatures: /, is not a constant
(e.g., Court 1985; Henderson-Sellers 1984, 1985;
Rogers and Yau 1989). It varies with temperature
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(in this case T,), which implies that we would need
to compute [, before computing T,. To do that, we
need to know T, first. There are numerical methods
for closing this loop, but another method that yields
results with a relatively small error is to simply use
an average value of , in the known range of tempera-
tures. The purposes and motivation of the research
described in this paper were 1) to try three variations
on the latent heat of vaporization (one a constant
and two different functions of temperature) and ap-
ply these toward computing boiling temperature as
a function of the total atmospheric pressure in the
Clausius—Clapeyron equation and 2) to determine
a direct function of total atmospheric pressure for
computing boiling temperature. For the purposes of
this research, the boiling temperatures listed in Lide
(2006) were considered correct.

METHODS AND RESULTS. Method /: Constant
I, In the first method, the boiling temperature of

sea level pressure (MSLP; 1,013.25 hPa) and the lower
pressure (high elevation) limit shown on most skew
T-logp diagrams (100 hPa) using (3) and the value of
I, at 50°C (2.3893 x 10°¢ ] kg™!) from Table 1 (Tsonis
2007). This value of I, was chosen for two reasons:
1) its corresponding temperature is midway between
the known boiling temperatures at MSLP and at
pressures near the top of the stratosphere and 2) do-
ing so made it possible to determine the accuracy of
the results when only a rough approximation of the
parameter is used. The results are shown in Table 2.

Table 2 also shows boiling-point data taken from
Lide (2006) and a summary of the differences between
the boiling points computed from (3) and the boil-
ing points taken from Lide (2006). Bias (column 5 of
Table 2) was defined as computed value minus the
Lide (2006) value. Accepting the values taken from
Lide (2006) as “correct,” the error values in column
6 of Table 2 were then computed by

(Computed \;a.lue) —(Lide 2006 value)
water was computed for the pressures between mean  Error = abs - x100%,
(lee 2006 value)

. ()
alaste li: A hesat of Va'i‘"" where the Lide (2006) values used in the denominator
izatlonifor water:Some'values were first converted to the absolute scale.
have been interpolated from h Its indi h thin 1 h
available data (Tsonis 2007). These results indicate that, to within less than

half a percentage point (mean error 0.33%) and about
Temp:eéature - I, _l 1.15°C (mean bias), the Clausius—-Clapeyron equation
GS) (19-0ksT) can be used to estimate the boiling point temperature
50 2.3893 of water in pressures typical of Earth’s lower atmo-
45 2.3945 sphere, even when using a rough estimate of the value
40 2.4062 of the latent heat of vaporization.
35 24183
30 2.4300
25 2.44|8 TasLe 2. Comparison of boiling temperature values computed
20 2.4535 from the Clausius-Clapeyron equation with constant /, (method I)
. to values from Lide (2006). Elevations correspond to the U.S. Stan-
15 2.4656 dard Atmosphere (NASA 1962, 1966, 1976).
19 2874 Pressure Elevation Computed Lide (2006) Bias Error
5 2.4891 (hPa) (m) value (°C) value(°C) (°C) (%)
0 2.5008 1,013.25 0 100.76 100.00 076 020
=5 2:5128 1,000 1L 100.4I 99.63 078 02l
=Y 25247 900 988 97.59 96.71 088 024
-I5 2.5366 800 1,947 94.49 93.51 098 027
-20 2.5494 700 3,010 91.04 89.96 108  0.30
—25 2.5622 600 4,203 87.14 85.95 119 0.33
-30 2.5749 500 5,570 82.63 81.34 1.29 0.36
=35 2.5890 400 7,180 77.26 75.88 1.38 0.40
-40 2.6030 300 9,157 70.57 69.11 1.46 043
-45 2.6189 200 11,766 61.56 60.07 1.49 045
-50 2.6348 100 15,787 47.22 45.82 1.40 0.44
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Method 2: Linearly varying |. The second method used
a linear function for I, and then used the computed
value of ], in (3) in an error-reduction loop to compute
boiling temperature as a finction of total atmospheric
pressure. The linear function is

L=1y+1,T, )

where ], is the latent heat of vaporization at tempera-
ture T (Jkg™), L5 is its value at 0°C (2.5008 x 10°J kg™),
1, is the slope of a linear function (—2,369), and T'is the
temperature (°C) (Miller 2015). This equation is de-
scribed in greater detail in Rogers and Yau (1989). In
this method, I, and I, were considered fixed constants,
not variables to be determined. An error-reduction
loop involving variable coefficients was employed in
the third method, described below.

In the error-reduction loop for method 2, a first-
guess temperature was used to estimate the value
of I, with (5), and the inverted Clausius—Clapeyron
equation (3) was then used with the estimated /, to
compute the boiling temperature at a selected pres-
sure. The resulting temperature was then substituted
into the latent heat relationship (5), yielding an
updated value of I, and the process was repeated.
This was continued for each selected pressure level
until the resulting boiling temperature from (3) and
the guess temperature used for I in (5) were within
0.01°C. This method was used to compute boiling
temperatures for the same pressures listed in Table 2,
then compared to boiling point temperatures from
Lide (2006). The results are shown in Table 3 and in-
dicate a mean bias of about 6.45°C and a mean error
of about 1.78% in the applicable range of pressures.
Both of these are larger than the results described in
Table 2. That is, by substituting this functional value
of |, for the fixed value (in an attempt to improve the
prediction of boiling point temperature), the results
got worse, not better.

Method 3: Second-order polynomial function for I,
The third method started with determining a new
function for the latent heat of vaporization, by com-
paring the saturation vapor pressures derived from
the Clausius-Clapeyron equation (which assumes
temperature-dependent variable values of 1) to the
saturation vapor pressures derived for the same
temperature using an advanced form of the equation
(which assumes a fixed value of I, called 1 ,):

- __ ~vapor
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TasLe 3. Comparison of boiling temperature values
computed with linear-function I, (method 2) to val-
ues from Lide (2006). Bias and error are as defined
in text.

Pressure Computed Lide (2006) Bias Error
(hPa)  value (°C) value (°C) (°C) (%)
1,013.25 110.22 100.00 10.22 2.74
1,000 109.74 99.63 10.11 2.71

900 106.01 96.71 9.30 2.5
800 101.97 93.51 8.46 231
700 97.56 89.96 7.60 2.09
600 92.67 85.95 6.72 1.87
500 87.14 81.34 5.80 .64
400 80.72 75.88 4.84 1.39
300 72.93 69.11 3.82 1.15
200 62.77 60.07 2.70 0.81
100 47.23 45.82 1.4} 0.44

where e is the reference pressure (611.12 Pa), I, is the
latent heat of vaporization at 0°C (2.5008 x 10 ] kg™),
R, is the individual gas constant for water vapor
(461.2 ] kg™ K™, T, is the reference temperature at
the triple point of water (273.16 K), T is the in situ
temperature (K), c is the specific heat of liquid water
at 0°C (4,215 ] kg™ K™), and ¢;*" is the specific heat
of water vapor at constant pressure (1,844.8 J kg K™)
(Miller 2015). Equation (6) can be derived analytically
by referring to Rogers and Yau (1989), combining
Egs. (2.10) and (2.14) in their text, and integrating the
result. It is also listed in Brock and Richardson (2001)
in a slightly different form.

The values of I, as a function of temperature
between 0° and 100°C (in 1°C increments) were
estimated by

« computing saturation vapor pressure with (1),
which uses the temperature-dependent variable
value of [, starting with a first-guess value of ;

e computing saturation vapor pressure with (6),
which uses the fixed value of I ; and

« adjusting the variable value of I, used in (1) to
systematically minimize the difference between
the two vapor pressures.

Henderson-Sellers (1984) derived a second-order
function to compute I, as a function of T. With
this example in mind, a second-order polynomial
(R? = 1.0000 and o = 49.11 ] kg™) was
fitted to the results of the error-re-
duction calculations described above,
taking the form
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the latent heat relationship
(7), and the process was re-
peated. This was continued
until the resulting boiling
temperature from (3) and
the guess temperature used
for I, in (7) were within
0.01°C. This method was
used to compute boiling
temperatures for pressures
between 50 and 1,080 hPa,

2.38 * . : :
0 10 20 30 40

Temperature [°C]

in 1-hPa increments. The
results were stored in a file
with two columns (one con-

60 70 80 90 100

Fic. I. Latent heat of vaporization as a function of temperature, computed taining pressure and the
by method 3.

I=1,+1,T+1,T?

other boiling temperature)

‘ and are plotted in Fig. 2.
(7) Sample values of the boiling temperature comput-
ed with (7) in the error-reduction loop were compared

where [, is the latent heat of vaporization (J kg™); /,, toboiling point temperatures taken from Lide (2006),
is the new zeroth-order coefficient (2.5007 x 10%), which is summarized in Table 5. The bias and error

I, is the new first-order coefficient
(-1,173.7723), 1, is the second-order
coefficient (1.1315), and T is the tem-
perature (°C). [A first-order fit, similar
to (5), yielded an R? of 0.9992.] Figure 1
shows the shape of the nearly linear
function, and Table 4 summarizes the
comparison between the computed
values of I, and those listed in Tsonis
(2007). The mean bias between 0° and
50°C is 0.0309 x 10° (J kg™') (mean-
ing the computed values are slightly
high), and the mean error is 1.28%,
indicating that (7) yields values of I,
that are probably serviceable for most
meteorological applications (e.g., cal-
culations of water vapor mixing ratio
and integrated precipitable water). The
rate of error growth in the available
range of data suggests that the error at
100°C is about 5%, which is also prob-
ably sufficient for most meteorological
applications.

From here, a second error-reduction
loop was used to compute the boiling
temperature as a function of pressure.
In this loop, a first-guess temperature
was used to compute the latent heat
term using (7), and (3) was then used
to compute the boiling temperature
at a selected pressure. The resulting
temperature was then substituted into

1488 | BANMS juLY 2017

TasLE 4. Comparison of I, computed via (7) and those listed in
Tsonis (2007).

Temperature Computed I, Tsonis (2007) |, Bias Error
(°C) (10°)kg™)  (10°Jkg™)  (10°Jkg™) (%)
100 2.3944
95 2.3992
90 2.4041
85 2.4090
80 2.4139
75 2.4189
70 2.4240
65 2.4291
60 2.4342
55 2.4395
50 2.4447 2.3893 0.0554 © 232
45 2.4500 2.3945 0.0555 2.32
40 2.4554 2.4062 0.0492 2.05
35 2.4608 2.4183 0.0546 2.27
30 2.4663 2.4300 0.0363 1.49
25 2.4719 24418 0.0301 1.23
20 24775 24535 0.0239 097
15 2.4832 2.4656 2.4656 0.71
10 2.4889 2.4774 0.0115 0.46
5 2.4948 2.4891 0.0057 0.23
2.5007 2.5008 -0.0001 0.004




values shown in columns 100 r
4 and 5 of Table 5 indicate
the results are still warm
relative to the Lide (2006) 80 |

values, but to a smaller de-

Q0 1

gree than the results of the 7= 0T
calculations that used the -"—u& 60 }
fixed value of I, (Table 2), F
and to a much lesser degree S0°r
than the calculations us- a0 }
ing the linear-functional /,
(Table 3). The mean bias is 30 ’ ' : ' ' ) ' ' ' '
0 100 200 300 400 500 600 700 @800 900 1000

0.31°C, and the mean error
in the range of pressures
shown is 0.08%.

Method 4: Polynomial fits to method 3 results. The
fourth and final method fitted a fifth-order polyno-
mial, with R? = 0.9998 and 0= 0.2377°C, to the boiling
pressure and temperature data in the file derived with
the third method, using pressure as the independent
variable and eliminating latent heat altogether:

T,=a+bp,+cpl+dp)+epi+ oy (8)

where T, is the boiling temperature (°C), p, is the
pressure (hPa), and a-f are coefficients shown in
Table 6. Lower-order polynomials yielded lower
values of R?, which is to be expected. A first-order fit
yielded an R* value of 0.9236, and a second-order fit
had a value of 0.9874. The fifth-order fit was judged a
reasonable balance between quality of fit and usabil-
ity, although additional work could certainly be done
to fit higher-order polynomials. Different functions

Pressure [hPa]

Fic. 2. Boiling temperature as a function of pressure, computed by method 3.

(a natural log function would be the logical choice)
could also be tried in some future work.

Sample values of the boiling temperature com-
puted with (8) were compared to boiling point
temperatures taken from Lide (2006) and are sum-
marized in Table 7. The bias and error values shown
in columns 4 and 5 of Table 7 indicate this function is
also slightly warm relative to the Lide (2006) values.
The mean bias is 0.25°C, and the mean error in the
range of pressures shown is 0.09%.

SUMMARY AND CONCLUSIONS. Boiling
is an extreme form of evaporation that occurs
when the saturation vapor pressure is equal to the
total atmospheric pressure (Glickman 2000). The
Clausius-Clapeyron equation (1) was recast to de-
scribe the boiling point (2) and solved for boiling
temperature (3). Since one term in the equation is
the latent heat of vaporization I, which is a function

TasLe 5. Comparison of boiling temperature values | ©f temperature, one can either use an approxima-
computed with second-order function I, (method tion of [, to compute boiling temperature T, at a
3) to values from Lide (2006). given pressure P, or use a temperature-dependent
Pressure Computed Lide (2006) Bias Error functional expression of /, and proceed through an
(hPa) value (°C) value (°C) (°C) (%) error-reduction loop. The purposes and motivation of
1,013.25 100.50 100.00 0.50 0.13
1,000 100.12 99.63 0.49 0.13 TasLe 6. Coefficients for fifth-order polyno-
900 97.16 96.71 045 0.12 mial fit for boiling temperature as a func-
800 93.92 93.51 041 on tion of pressure (method 4).
700 90.32 89.96 036  0.10 Coefficient Value
600 86.27 8595 032  0.09 a 20.682
500 81.61 81.34 0.27 0.08 b 0.3151
400 76.10 75.88 0.22 0.06 c —0.000079207
300 69.28 69.11 0.17 0.05 d 1.1999 x 10-¢
200 60.19 60.07 0.12 0.04 e -9.178 x [Q~°
100 45.87 45.82 0.05 0.02 f 2.7412 x |03
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this research were 1) to test one constant value
and two temperature-dependent functional
expressions for /, in the Clausius-Clapeyron
equation and 2) to derive a simple polynomial
function, with atmospheric pressure as the
independent variable, to compute boiling

TasLe 7. Comparison of boiling temperature values com-
puted with fifth-order polynomial (method 4) to values
from Lide (2006).

temperature. Values of boiling temperature

as a function of pressure as reported in Lide

(2006) were used as the standard by which all

four methods were judged. Results are sum-

marized in Table 8.

The first method used the value of I, valid

for 50°C and obtained results that were correct

to within a mean error of 0.33% and a mean
bias of 1.15°C for pressures typical of Earth’s

troposphere and lower stratosphere. The sec-

ond method used the linear expression for I,
described by (5) (Rogers and Yau 1989), and

Pressure Computed Lide (2006) Bias Error
(hPa)  value (°C) value (°C) (°C) (%)
1,013.25 100.34 100.00 0.34 0.09
1,000 99.93 99.63 0.30 0.08

900 97.12 96.71 041 0.11
800 94.08 93.51 0.57 0.16
700 90.41 89.96 0.45 0.12
600 86.14 85.95 0.19 0.05
500 814l 81.34 0.07 0.02
400 76.10 75.88 0.22 0.06
300 69.56 69.11 0.44 0.13
200 60.24 60.07 0.17 0.05
100 45.38 45.82 -0.44 0.14

the result was an even greater disagreement
between computed values of T, from (3) and those
listed in Lide (2006), with a mean bias of about 6.45°C
between MSLP and 100 hPa (indicating computed
values of the boiling temperature were too warm) and
a mean error of about 1.78%.

The third method began by deriving a new,
second-order, temperature-dependent polynomial (7)
for I,. The new function for /, yields a mean latent heat
error of 1.28% between 0° and 50°C when compared
to those listed in Tsonis (2007), and a probable error
at 100°C of about 5%. An error-reduction loop was
used to compute the boiling temperature as a func-
tion of pressure, wherein a first-guess temperature
was used to compute the latent heat coefficient using
the second-order polynomial shown in (7), and (3)
was then used to compute the boiling temperature
at a selected pressure. The resulting temperature
from (3) was then substituted into the latent heat re-
lationship (7), and the process was repeated until the
resulting boiling temperature from (3) and the guess
temperature used for [, in (7) were within 0.01°C. This
method was used to compute boiling temperatures for

TasLE 8. Comparison of mean bias and error be-
tween MSLP and 100 hPa for methods tested to
compute boiling temperature.

Mean Mean

bias error
Method °C) (%)
I. Constant /, in (3) 115 0.33
2. Linear I, (5) in (3) 6.45 1.78
3. Second-order [, (7) in (3) 0.31 0.08
4. Fifth-order polynomial in P, (8) 0.25. 0.09
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pressures between 50 and 1,080 hPa, in 1-hPa incre-
ments. This method for computing T, showed a warm
bias (mean value 0.31°C between MSLP and 100 hPa)
compared to Lide (2006) and a mean error about 4
times smaller than those associated with computed
values of T, that used the constant value of /..

The fourth method fitted a fifth-order polynomial
(eliminating /, and making P, the sole independent
variable) to the boiling temperatures resulting from
the third method (8). The polynomial shows an R?
value 0f 0.9998 and fit standard deviation 0f 0.2377°C.
Computed values of T, using the polynomial were as-
sociated with a mean bias of 0.25°C and a mean error
of 0.09% when compared to Lide (2006).
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